R/vcov.R

Defines functions vcov.sfaselectioncross vcov.sfalcmcross vcov.sfacross

Documented in vcov.sfacross vcov.sfalcmcross vcov.sfaselectioncross

################################################################################
#                                                                              #
# R functions for the sfaR package                                             #
#                                                                              #
################################################################################

#------------------------------------------------------------------------------#
# Variance - Covariance Matrix of estimates                                    #
# Models: + Cross sectional & Pooled data                                      #
#           -Stochastic Frontier Analysis                                      #
#           -Latent Class Stochastic Frontier Analysis                         #
#           -Sample selection correction for Stochastic Frontier Model         #
# Data: Cross sectional data & Pooled data                                     #
#------------------------------------------------------------------------------#

#' Compute variance-covariance matrix of stochastic frontier models
#'
#' \code{\link{vcov}} computes the variance-covariance matrix of the maximum
#' likelihood (ML) coefficients from stochastic frontier models estimated with 
#' \code{\link{sfacross}}, \code{\link{sfalcmcross}}, 
#' or \code{\link{sfaselectioncross}}.
#'
#' @details The variance-covariance matrix is obtained by the inversion of the 
#' negative Hessian matrix. Depending on the distribution and the
#' \code{'hessianType'} option, the analytical/numeric Hessian or the bhhh 
#' Hessian is evaluated.
#'
#' The argument \code{extraPar}, is currently available only for objects of class
#' \code{'sfacross'} and \code{'sfaselectioncross'}. When 
#' \code{'extraPar = TRUE'}, the variance-covariance of the additional 
#' parameters is obtained using the delta method.
#'
#' @param object A stochastic frontier model returned
#' by \code{\link{sfacross}}, \code{\link{sfalcmcross}}, or 
#' \code{\link{sfaselectioncross}}.
#' @param extraPar Logical. Only available for non heteroscedastic models
#' returned by \code{\link{sfacross}} and \code{\link{sfaselectioncross}}. 
#' Default = \code{FALSE}. If \code{TRUE}, variances and covariances of 
#' additional parameters are returned:
#'
#' \code{sigmaSq} = \code{sigmauSq} + \code{sigmavSq}
#'
#' \code{lambdaSq} = \code{sigmauSq}/\code{sigmavSq}
#'
#' \code{sigmauSq} = \eqn{\exp{(Wu)}} = \eqn{\exp{(\bm{\delta} \mathbf{Z}_u)}}
#'
#' \code{sigmavSq} = \eqn{\exp{(Wv)}} = \eqn{\exp{(\bm{\phi} \mathbf{Z}_v)}}
#'
#' \code{sigma} = \code{sigmaSq}^0.5
#'
#' \code{lambda} = \code{lambdaSq}^0.5
#'
#' \code{sigmau} = \code{sigmauSq}^0.5
#'
#' \code{sigmav} = \code{sigmavSq}^0.5
#'
#' \code{gamma} = \code{sigmauSq}/(\code{sigmauSq} + \code{sigmavSq})
#' @param ... Currently ignored
#'
#' @name vcov
#'
#' @return The variance-covariance matrix of the maximum likelihood
#' coefficients is returned.
#'
# @author K Hervé Dakpo
#'
#' @seealso \code{\link{sfacross}}, for the stochastic frontier analysis model
#' fitting function using cross-sectional or pooled data.
#' 
#' \code{\link{sfalcmcross}}, for the latent class stochastic frontier analysis
#' model fitting function using cross-sectional or pooled data.
#' 
#' \code{\link{sfaselectioncross}} for sample selection in stochastic frontier 
#' model fitting function using cross-sectional data.
#' 
#' @keywords methods vcov
#'
#' @examples
#'
#' ## Using data on Spanish dairy farms
#' # Cobb Douglas (production function) half normal distribution
#' cb_s_h <- sfacross(formula = YIT ~ X1 + X2 + X3 + X4, udist = 'hnormal',
#' data = dairyspain, S = 1, method = 'bfgs')
#' vcov(cb_s_h)
#' vcov(cb_s_h, extraPar = TRUE)
#'  
#' # Other variance-covariance matrices can be obtained using the sandwich package
#'  
#' # Robust variance-covariance matrix
#'  
#' requireNamespace('sandwich', quietly = TRUE)
#'  
#' sandwich::vcovCL(cb_s_h)
#'  
#' # Coefficients and standard errors can be obtained using lmtest package
#'  
#' requireNamespace('lmtest', quietly = TRUE)
#'  
#' lmtest::coeftest(cb_s_h, vcov. = sandwich::vcovCL)
#'  
#' # Clustered standard errors
#'  
#' lmtest::coeftest(cb_s_h, vcov. = sandwich::vcovCL, cluster = ~ FARM)
#'  
#' # Doubly clustered standard errors
#'  
#' lmtest::coeftest(cb_s_h, vcov. = sandwich::vcovCL, cluster = ~ FARM + YEAR)
#'  
#' # BHHH standard errors
#'  
#' lmtest::coeftest(cb_s_h, vcov. = sandwich::vcovOPG)
#'  
#' # Adjusted BHHH standard errors
#'  
#' lmtest::coeftest(cb_s_h, vcov. = sandwich::vcovOPG, adjust = TRUE)
#'
#' ## Using data on eighty-two countries production (GDP)
#' # LCM Cobb Douglas (production function) half normal distribution
#' cb_2c_h <- sfalcmcross(formula = ly ~ lk + ll + yr, udist = 'hnormal',
#' data = worldprod, uhet = ~ initStat, S = 1)
#' vcov(cb_2c_h)
#'
#' @aliases vcov.sfacross
#' @export
# variance covariance matrix for sfacross ----------
vcov.sfacross <- function(object, extraPar = FALSE, ...) {
  if (length(extraPar) != 1 || !is.logical(extraPar[1])) {
    stop("argument 'extraPar' must be a single logical value",
      call. = FALSE)
  }
  resCov <- object$invHessian
  if (extraPar) {
    if (object$udist %in% c("tnormal", "lognormal")) {
      delta <- object$mlParam[(object$nXvar + object$nmuZUvar +
        1):(object$nXvar + object$nmuZUvar + object$nuZUvar)]
      phi <- object$mlParam[(object$nXvar + object$nmuZUvar +
        object$nuZUvar + 1):(object$nXvar + object$nmuZUvar +
        object$nuZUvar + object$nvZVvar)]
      uHvar <- model.matrix(object$formula, data = object$dataTable,
        rhs = 3)
      vHvar <- model.matrix(object$formula, data = object$dataTable,
        rhs = 4)
    } else {
      delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
        object$nuZUvar)]
      phi <- object$mlParam[(object$nXvar + object$nuZUvar +
        1):(object$nXvar + object$nuZUvar + object$nvZVvar)]
      uHvar <- model.matrix(object$formula, data = object$dataTable,
        rhs = 2)
      vHvar <- model.matrix(object$formula, data = object$dataTable,
        rhs = 3)
    }
    Wu <- mean(as.numeric(crossprod(matrix(delta), t(uHvar))))
    Wv <- mean(as.numeric(crossprod(matrix(phi), t(vHvar))))
    if (object$udist %in% c("tnormal", "lognormal")) {
      if (object$nuZUvar > 1 || object$nvZVvar > 1 || object$nmuZUvar >
        1) {
        stop("argument 'extraPar' is not available for heteroscedasctic models",
          call. = FALSE)
      }
    } else {
      if (object$nuZUvar > 1 || object$nvZVvar > 1) {
        stop("argument 'extraPar' is not available for heteroscedasctic models",
          call. = FALSE)
      }
    }
    jac <- diag(nrow(resCov))
    jac <- rbind(jac, matrix(0, nrow = 9, ncol = ncol(resCov)))
    rownames(jac) <- c(rownames(resCov), "sigmaSq", "lambdaSq",
      "sigmauSq", "sigmavSq", "sigma", "lambda", "sigmau",
      "sigmav", "gamma")
    colnames(jac) <- colnames(resCov)
    jac["sigmaSq", "Zu_(Intercept)"] <- exp(Wu)
    jac["sigmaSq", "Zv_(Intercept)"] <- exp(Wv)
    jac["lambdaSq", "Zu_(Intercept)"] <- exp(Wu)/exp(Wv)
    jac["lambdaSq", "Zv_(Intercept)"] <- -exp(Wu + Wv)/exp(2 *
      Wv)
    jac["sigmauSq", "Zu_(Intercept)"] <- exp(Wu)
    jac["sigmavSq", "Zv_(Intercept)"] <- exp(Wv)
    jac["sigma", "Zu_(Intercept)"] <- 1/2 * exp(Wu) * (exp(Wu) +
      exp(Wv))^(-1/2)
    jac["sigma", "Zv_(Intercept)"] <- 1/2 * exp(Wv) * (exp(Wu) +
      exp(Wv))^(-1/2)
    jac["lambda", "Zu_(Intercept)"] <- 1/2 * exp(Wu/2)/exp(Wv/2)
    jac["lambda", "Zv_(Intercept)"] <- -1/2 * exp(Wu/2 +
      Wv/2)/exp(Wv)
    jac["sigmau", "Zu_(Intercept)"] <- 1/2 * exp(Wu/2)
    jac["sigmav", "Zv_(Intercept)"] <- 1/2 * exp(Wv/2)
    jac["gamma", "Zu_(Intercept)"] <- (exp(Wu) * (exp(Wu) +
      exp(Wv)) - exp(2 * Wu))/(exp(Wu) + exp(Wv))^2
    jac["gamma", "Zv_(Intercept)"] <- -exp(Wu + Wv)/(exp(Wu) +
      exp(Wv))^2
    resCov <- jac %*% resCov %*% t(jac)
  }
  return(resCov)
}

# variance covariance matrix for sfalcmcross ----------
#' @rdname vcov
#' @aliases vcov.sfalcmcross
#' @export
vcov.sfalcmcross <- function(object, ...) {
  resCov <- object$invHessian
  return(resCov)
}

# vcov matrix for sfaselectioncross  ----------
#' @rdname vcov
#' @aliases vcov.sfaselectioncross
#' @export
vcov.sfaselectioncross <- function(object, extraPar = FALSE,
  ...) {
  if (length(extraPar) != 1 || !is.logical(extraPar[1])) {
    stop("argument 'extraPar' must be a single logical value",
      call. = FALSE)
  }
  resCov <- object$invHessian
  if (extraPar) {
    delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
      object$nuZUvar)]
    phi <- object$mlParam[(object$nXvar + object$nuZUvar +
      1):(object$nXvar + object$nuZUvar + object$nvZVvar)]
    uHvar <- model.matrix(object$formula, data = object$dataTable[object$dataTable$selectDum ==
      1, ], rhs = 2)
    vHvar <- model.matrix(object$formula, data = object$dataTable[object$dataTable$selectDum ==
      1, ], rhs = 3)
    Wu <- mean(as.numeric(crossprod(matrix(delta), t(uHvar))))
    Wv <- mean(as.numeric(crossprod(matrix(phi), t(vHvar))))
    if (object$nuZUvar > 1 || object$nvZVvar > 1) {
      stop("argument 'extraPar' is not available for heteroscedasctic models",
        call. = FALSE)
    }
    jac <- diag(nrow(resCov))
    jac <- rbind(jac, matrix(0, nrow = 9, ncol = ncol(resCov)))
    rownames(jac) <- c(rownames(resCov), "sigmaSq", "lambdaSq",
      "sigmauSq", "sigmavSq", "sigma", "lambda", "sigmau",
      "sigmav", "gamma")
    colnames(jac) <- colnames(resCov)
    jac["sigmaSq", "Zu_(Intercept)"] <- exp(Wu)
    jac["sigmaSq", "Zv_(Intercept)"] <- exp(Wv)
    jac["lambdaSq", "Zu_(Intercept)"] <- exp(Wu)/exp(Wv)
    jac["lambdaSq", "Zv_(Intercept)"] <- -exp(Wu + Wv)/exp(2 *
      Wv)
    jac["sigmauSq", "Zu_(Intercept)"] <- exp(Wu)
    jac["sigmavSq", "Zv_(Intercept)"] <- exp(Wv)
    jac["sigma", "Zu_(Intercept)"] <- 1/2 * exp(Wu) * (exp(Wu) +
      exp(Wv))^(-1/2)
    jac["sigma", "Zv_(Intercept)"] <- 1/2 * exp(Wv) * (exp(Wu) +
      exp(Wv))^(-1/2)
    jac["lambda", "Zu_(Intercept)"] <- 1/2 * exp(Wu/2)/exp(Wv/2)
    jac["lambda", "Zv_(Intercept)"] <- -1/2 * exp(Wu/2 +
      Wv/2)/exp(Wv)
    jac["sigmau", "Zu_(Intercept)"] <- 1/2 * exp(Wu/2)
    jac["sigmav", "Zv_(Intercept)"] <- 1/2 * exp(Wv/2)
    jac["gamma", "Zu_(Intercept)"] <- (exp(Wu) * (exp(Wu) +
      exp(Wv)) - exp(2 * Wu))/(exp(Wu) + exp(Wv))^2
    jac["gamma", "Zv_(Intercept)"] <- -exp(Wu + Wv)/(exp(Wu) +
      exp(Wv))^2
    resCov <- jac %*% resCov %*% t(jac)
  }
  return(resCov)
}

Try the sfaR package in your browser

Any scripts or data that you put into this service are public.

sfaR documentation built on Oct. 29, 2024, 9:07 a.m.