Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(fig.align = "center", eval = TRUE)
knitr::opts_chunk$set(fig.height = 7, fig.width = 8, dpi = 90, out.width = '100%')
knitr::opts_chunk$set(comment = "#>")
## ----warning=FALSE, include=TRUE----------------------------------------------
library(sfclust)
library(stars)
library(ggplot2)
library(dplyr)
## -----------------------------------------------------------------------------
data("stbinom")
## ----fig.height = 9.5---------------------------------------------------------
ggplot() +
geom_stars(aes(fill = cases/population), data = stbinom) +
facet_wrap(~ time) +
scale_fill_distiller(palette = "RdBu") +
labs(title = "Daily risk", fill = "Risk") +
theme_bw(base_size = 7) +
theme(legend.position = "bottom")
## ----eval = FALSE, echo = FALSE-----------------------------------------------
# stweekly <- aggregate(stbinom, by = "week", FUN = mean)
# ggplot() +
# geom_stars(aes(fill = cases/population), stweekly) +
# facet_wrap(~ time) +
# scale_fill_distiller(palette = "RdBu") +
# labs(title = "Weekly mean risk", fill = "Risk") +
# theme_bw()
## -----------------------------------------------------------------------------
stbinom |>
st_set_dimensions("geometry", values = 1:nrow(stbinom)) |>
as_tibble() |>
ggplot() +
geom_line(aes(time, cases/population, group = geometry), linewidth = 0.3) +
theme_bw() +
labs(title = "Risk per region", y = "Risk", x = "Time")
## ----eval = FALSE, echo = FALSE-----------------------------------------------
# # set.seed(7)
# # system.time(
# # sfclust(stbinom, formula = cases ~ poly(time, 2) + f(id),
# # family = "binomial", Ntrials = population,
# # niter = 2000, path_save = file.path("inst", "vigdata", "full-binomial-mcmc.rds")
# # )
# # )
# # # user system elapsed
# # # 10819.833 1417.088 1644.396
## ----eval = FALSE, echo = FALSE-----------------------------------------------
# # # Reduce size of object
# # result <- readRDS(file.path("inst", "vigdata", "full-binomial-mcmc.rds"))
# # pseudo_inla <- function(x) {
# # list(
# # summary.random = list(id = x$summary.random$id["mean"]),
# # summary.linear.predictor = x$summary.linear.predictor["mean"]
# # )
# # }
# # result$clust$models <- lapply(result$clust$models, pseudo_inla)
# # saveRDS(result, file.path("inst", "vigdata", "binomial-mcmc.rds"))
## ----eval = FALSE-------------------------------------------------------------
# set.seed(7)
# result <- sfclust(stbinom, formula = cases ~ poly(time, 2) + f(id),
# family = "binomial", Ntrials = population, niter = 2000)
# names(result)
## ----echo = FALSE-------------------------------------------------------------
result <- readRDS(system.file("vigdata", "binomial-mcmc.rds", package = "sfclust"))
names(result)
## -----------------------------------------------------------------------------
result
## ----fig.height = 5-----------------------------------------------------------
plot(result)
## -----------------------------------------------------------------------------
summary(result)
## -----------------------------------------------------------------------------
summary(result, sample = 500)
## -----------------------------------------------------------------------------
summary(result, sort = TRUE)
## -----------------------------------------------------------------------------
pred <- fitted(result)
## ----fig.height = 9.5---------------------------------------------------------
ggplot() +
geom_stars(aes(fill = mean), data = pred) +
facet_wrap(~ time) +
scale_fill_distiller(palette = "RdBu") +
labs(title = "Daily risk", fill = "Risk") +
theme_bw(base_size = 7) +
theme(legend.position = "bottom")
## -----------------------------------------------------------------------------
pred <- fitted(result, sort = TRUE, aggregate = TRUE)
## ----fig.height = 9.5---------------------------------------------------------
ggplot() +
geom_stars(aes(fill = mean), data = pred) +
facet_wrap(~ time) +
scale_fill_distiller(palette = "RdBu") +
labs(title = "Daily risk", fill = "Risk") +
theme_bw(base_size = 7) +
theme(legend.position = "bottom")
## ----fig.height = 9.5---------------------------------------------------------
stbinom$cluster <- fitted(result, sort = TRUE)$cluster
stbinom |>
st_set_dimensions("geometry", values = 1:nrow(stbinom)) |>
as_tibble() |>
ggplot() +
geom_line(aes(time, cases/population, group = geometry), linewidth = 0.3) +
facet_wrap(~ cluster, ncol = 2) +
theme_bw() +
labs(title = "Risk per cluster", y = "Risk", x = "Time")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.