Nothing
#' @title Pointwise deviance of a GMF model
#' @description Compute the pointwise deviance for all the observations in the sample
#' @keywords internal
pointwise.deviance = function (mu, y, family = gaussian()) {
if (length(mu) == 1) {
mut = y
mut[] = mu
mu = mut
}
nona = !is.na(y)
dev = y
dev[] = NA
dev[nona] = family$dev.resids(y[nona], mu[nona], 1)
return(dev)
}
#' @title Model deviance of a GMF model
#' @description Compute the overall deviance averaging the contributions of all data
#' @keywords internal
matrix.deviance = function (mu, y, family = gaussian()) {
dev = pointwise.deviance(mu, y, family)
dev = sum(dev, na.rm = TRUE)
# dev = mean(dev, na.rm = TRUE)
return (dev)
}
#' @title Frobenius penalty for the parameters of a GMF model
#' @description Compute the Frobenius penalty for all the parameters in the model
#' @keywords internal
matrix.penalty = function (U, penalty) {
pen = sum(sweep(U**2, 2, penalty, "*"))
return (pen)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.