Nothing
skip_on_cran()
# Separate regression ==================================================================================================
test_that("output_lm_numeric_lm_separate_iterative", {
expect_snapshot_rds(
explain(
testing = TRUE,
model = model_lm_numeric,
x_explain = x_explain_numeric,
x_train = x_train_numeric,
approach = "regression_separate",
phi0 = p0,
seed = 1,
regression.model = parsnip::linear_reg(),
iterative = TRUE
),
"output_lm_numeric_lm_separate_iterative"
)
})
test_that("output_lm_numeric_lm_separate", {
expect_snapshot_rds(
explain(
testing = TRUE,
model = model_lm_numeric,
x_explain = x_explain_numeric,
x_train = x_train_numeric,
approach = "regression_separate",
phi0 = p0,
seed = 1,
regression.model = parsnip::linear_reg(),
iterative = FALSE
),
"output_lm_numeric_lm_separate"
)
})
test_that("output_lm_numeric_lm_separate_n_comb", {
expect_snapshot_rds(
explain(
testing = TRUE,
model = model_lm_numeric,
x_explain = x_explain_numeric,
x_train = x_train_numeric,
approach = "regression_separate",
phi0 = p0,
seed = 1,
max_n_coalitions = 10,
regression.model = parsnip::linear_reg(),
iterative = FALSE
),
"output_lm_numeric_lm_separate_n_comb"
)
})
test_that("output_lm_categorical_lm_separate", {
expect_snapshot_rds(
explain(
testing = TRUE,
model = model_lm_categorical,
x_explain = x_explain_categorical,
x_train = x_train_categorical,
approach = "regression_separate",
phi0 = p0,
seed = 1,
regression.model = parsnip::linear_reg(),
iterative = FALSE
),
"output_lm_categorical_lm_separate"
)
})
test_that("output_lm_mixed_lm_separate", {
expect_snapshot_rds(
explain(
testing = TRUE,
model = model_lm_mixed,
x_explain = x_explain_mixed,
x_train = x_train_mixed,
approach = "regression_separate",
phi0 = p0,
seed = 1,
regression.model = parsnip::linear_reg(),
iterative = FALSE
),
"output_lm_mixed_lm_separate"
)
})
test_that("output_lm_mixed_splines_separate", {
expect_snapshot_rds(
explain(
testing = TRUE,
model = model_lm_mixed,
x_explain = x_explain_mixed,
x_train = x_train_mixed,
approach = "regression_separate",
phi0 = p0,
seed = 1,
regression.model = parsnip::linear_reg(),
regression.recipe_func = function(regression.recipe) {
recipes::step_ns(regression.recipe, recipes::all_numeric_predictors(), deg_free = 2)
},
iterative = FALSE
),
"output_lm_mixed_splines_separate"
)
})
test_that("output_lm_mixed_decision_tree_cv_separate", {
expect_snapshot_rds(
explain(
testing = TRUE,
model = model_lm_mixed,
x_explain = x_explain_mixed,
x_train = x_train_mixed,
phi0 = p0,
seed = 1,
approach = "regression_separate",
regression.model = parsnip::decision_tree(tree_depth = hardhat::tune(), engine = "rpart", mode = "regression"),
regression.tune_values = data.frame(tree_depth = c(1, 2)),
regression.vfold_cv_para = list(v = 2),
iterative = FALSE
),
"output_lm_mixed_decision_tree_cv_separate"
)
})
test_that("output_lm_mixed_decision_tree_cv_separate_parallel", {
testthat::skip_on_cran() # Avoiding CRAN Note: Running R code in ‘testthat.R’ had CPU time 3.6 times elapsed time
future::plan("multisession", workers = 2)
expect_snapshot_rds(
explain(
testing = TRUE,
model = model_lm_mixed,
x_explain = x_explain_mixed,
x_train = x_train_mixed,
phi0 = p0,
seed = 1,
approach = "regression_separate",
regression.model = parsnip::decision_tree(tree_depth = hardhat::tune(), engine = "rpart", mode = "regression"),
regression.tune_values = data.frame(tree_depth = c(1, 2)),
regression.vfold_cv_para = list(v = 2),
iterative = FALSE
),
"output_lm_mixed_decision_tree_cv_separate_parallel"
)
future::plan("sequential")
})
test_that("output_lm_mixed_xgboost_separate", {
expect_snapshot_rds(
explain(
testing = TRUE,
model = model_lm_mixed,
x_explain = x_explain_mixed,
x_train = x_train_mixed,
phi0 = p0,
seed = 1,
approach = "regression_separate",
regression.model = parsnip::boost_tree(engine = "xgboost", mode = "regression"),
regression.recipe_func = function(regression.recipe) {
return(recipes::step_dummy(regression.recipe, recipes::all_factor_predictors()))
},
iterative = FALSE
),
"output_lm_mixed_xgboost_separate"
)
})
# Surrogate regression =================================================================================================
test_that("output_lm_numeric_lm_surrogate_iterative", {
expect_snapshot_rds(
explain(
testing = TRUE,
model = model_lm_numeric,
x_explain = x_explain_numeric,
x_train = x_train_numeric,
approach = "regression_surrogate",
phi0 = p0,
seed = 1,
regression.model = parsnip::linear_reg(),
iterative = TRUE
),
"output_lm_numeric_lm_surrogate_iterative"
)
})
test_that("output_lm_numeric_lm_surrogate", {
expect_snapshot_rds(
explain(
testing = TRUE,
model = model_lm_numeric,
x_explain = x_explain_numeric,
x_train = x_train_numeric,
approach = "regression_surrogate",
phi0 = p0,
seed = 1,
regression.model = parsnip::linear_reg(),
iterative = FALSE
),
"output_lm_numeric_lm_surrogate"
)
})
test_that("output_lm_numeric_lm_surrogate_n_comb", {
expect_snapshot_rds(
explain(
testing = TRUE,
model = model_lm_numeric,
x_explain = x_explain_numeric,
x_train = x_train_numeric,
approach = "regression_surrogate",
phi0 = p0,
seed = 1,
max_n_coalitions = 12,
regression.model = parsnip::linear_reg(),
iterative = FALSE
),
"output_lm_numeric_lm_surrogate_n_comb"
)
})
test_that("output_lm_numeric_lm_surrogate_reg_surr_n_comb", {
expect_snapshot_rds(
explain(
testing = TRUE,
model = model_lm_numeric,
x_explain = x_explain_numeric,
x_train = x_train_numeric,
approach = "regression_surrogate",
phi0 = p0,
seed = 1,
max_n_coalitions = 12,
regression.model = parsnip::linear_reg(),
regression.surrogate_n_comb = 8,
iterative = FALSE
),
"output_lm_numeric_lm_surrogate_reg_surr_n_comb"
)
})
test_that("output_lm_categorical_lm_surrogate", {
expect_snapshot_rds(
explain(
testing = TRUE,
model = model_lm_categorical,
x_explain = x_explain_categorical,
x_train = x_train_categorical,
approach = "regression_surrogate",
phi0 = p0,
seed = 1,
regression.model = parsnip::linear_reg(),
iterative = FALSE
),
"output_lm_categorical_lm_surrogate"
)
})
test_that("output_lm_mixed_lm_surrogate", {
expect_snapshot_rds(
explain(
testing = TRUE,
model = model_lm_mixed,
x_explain = x_explain_mixed,
x_train = x_train_mixed,
approach = "regression_surrogate",
phi0 = p0,
seed = 1,
regression.model = parsnip::linear_reg(),
iterative = FALSE
),
"output_lm_mixed_lm_surrogate"
)
})
test_that("output_lm_mixed_decision_tree_cv_surrogate", {
expect_snapshot_rds(
explain(
testing = TRUE,
model = model_lm_mixed,
x_explain = x_explain_mixed,
x_train = x_train_mixed,
phi0 = p0,
seed = 1,
approach = "regression_surrogate",
regression.model = parsnip::decision_tree(tree_depth = hardhat::tune(), engine = "rpart", mode = "regression"),
regression.tune_values = data.frame(tree_depth = c(1, 2)),
regression.vfold_cv_para = list(v = 2),
iterative = FALSE
),
"output_lm_mixed_decision_tree_cv_surrogate"
)
})
test_that("output_lm_mixed_xgboost_surrogate", {
expect_snapshot_rds(
explain(
testing = TRUE,
model = model_lm_mixed,
x_explain = x_explain_mixed,
x_train = x_train_mixed,
phi0 = p0,
seed = 1,
approach = "regression_surrogate",
regression.model = parsnip::boost_tree(engine = "xgboost", mode = "regression"),
regression.recipe_func = function(regression.recipe) {
recipes::step_dummy(regression.recipe, recipes::all_factor_predictors())
},
iterative = FALSE
),
"output_lm_mixed_xgboost_surrogate"
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.