Nothing
#
# This is a Shiny web application. You can run the application by clicking
# the 'Run App' button above.
#
# Find out more about building applications with Shiny here:
#
# http://shiny.rstudio.com/
#
library(shiny)
# the ui function
irisClusterUI <- fluidPage(
# add a title with the titlePanel function
titlePanel("Iris k-means clustering"),
# set up the page with a sidebar layout
sidebarLayout(
# add a sidebar panel to store user inputs
sidebarPanel(
# add the dropdown for the X variable
selectInput(
inputId = "xcol",
label = "X Variable",
choices = c(
"Sepal.Length",
"Sepal.Width",
"Petal.Length",
"Petal.Width"),
selected = "Sepal.Length"
),
# add the dropdown for the Y variable
selectInput(
inputId = "ycol",
label = "Y Variable",
choices = c(
"Sepal.Length",
"Sepal.Width",
"Petal.Length",
"Petal.Width"),
selected = "Sepal.Width"
),
# add input to store cluster number
numericInput(
inputId = "clusters",
label = "Cluster count",
value = 3,
min = 1,
max = 9
)
), # end of sidebarPanel function
# add a main panel & scatterplot placeholder
mainPanel(
plotOutput(
outputId = "plot1"
)
) # end of mainPanel function
) # end of sidebarLayout function
) # end of fluidPage function
# Define server logic required to draw a histogram
irisCluster <- function(input, output){
# subset the iris data
selectedData <- reactive({
iris[, c(input$xcol, input$ycol)]
})
# run the kmeans clustering
clusters <- reactive({
kmeans(
x = selectedData(),
centers = input$clusters
)
})
# produce the scatterplot
output$plot1 <- renderPlot({
oldpar <- par('mar')
par(mar = c(5.1, 4.1, 0, 1))
p <- plot(
selectedData(),
col = clusters()$cluster,
pch = 20,
cex = 3
)
par(mar=oldpar)
p
})
} # end of server function
# Run the application
shinyApp(ui = irisClusterUI, server = irisCluster)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.