Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(shinyr)
## ----eval=FALSE---------------------------------------------------------------
# install.packages("shinyr")
# library(shinyr)
## ----eval = FALSE, warnings = FALSE-------------------------------------------
# library(shinyr)
# shinyr::shineMe()
## ----warning=FALSE, message=FALSE---------------------------------------------
library(shinyr)
dsets <- shinyr::valid_sets()
knitr::kable(dsets)
## ----warning=FALSE, message=FALSE---------------------------------------------
dsets$Item <- as.character(dsets$Item)
mtcars <- get(dsets$Item[dsets$Item == "mtcars"])
knitr::kable(head(mtcars))
## -----------------------------------------------------------------------------
getnumericCols(mtcars)
## ----warning=FALSE, echo=FALSE------------------------------------------------
splitAndGet("**shinyr** is developed to build dynamic shiny based dashboards to analyze the data of your choice. It provides simple yet genius dashboard design to subset the data, perform exploratory analysis and predictive analysis by means of")
## ----warning=FALSE, echo=FALSE------------------------------------------------
x <- getFeqTable("shinyr is developed to build dynamic shiny based dashboards to analyze the data of your choice. It provides simple yet genius dashboard design to subset the data, perform exploratory analysis and predictive analysis by means of")
knitr::kable(x)
## ----warning=FALSE------------------------------------------------------------
getWordCloud(x)
## ----echo=FALSE, warning=FALSE------------------------------------------------
res <- getDataInsight(mtcars)
knitr::kable(res$Types)
## -----------------------------------------------------------------------------
knitr::kable(res$cor_matrix)
## -----------------------------------------------------------------------------
corrplot::corrplot(as.matrix(res$cor_matrix),method = "number")
## -----------------------------------------------------------------------------
excludeThese(mtcars$mpg, c(21.0))
## -----------------------------------------------------------------------------
getMostRepeatedValue(c(1,1,1,2,2,3,4,5))
## -----------------------------------------------------------------------------
x <- head(mtcars)
x$mpg[1:2] <- NA
## -----------------------------------------------------------------------------
missing_count(x$mpg)
## -----------------------------------------------------------------------------
imputeMyData(df = x, col = "mpg", FUN = "mean")
## -----------------------------------------------------------------------------
knitr::kable(groupByandSumarize(mtcars, grp_col = c("am"), summarise_col = "hp", FUN = "mean"))
## -----------------------------------------------------------------------------
partition <- dataPartition(mtcars, 85)
## -----------------------------------------------------------------------------
knitr::kable(head(partition$Train))
## -----------------------------------------------------------------------------
knitr::kable(head(partition$Test))
## -----------------------------------------------------------------------------
mod <- lm(formula = wt ~ ., data = mtcars)
mod
## -----------------------------------------------------------------------------
predictions <- predict(mod, mtcars[,-6])
## -----------------------------------------------------------------------------
actials <- mtcars[,6]
x <- regressionModelMetrics(actuals = actials, predictions = predictions, model = mod)
y <- as.data.frame(x)
row.names(y) <- NULL
knitr::kable(y)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.