Nothing
#' @rdname model_functions
#' @description \code{model_timing_gates} estimates short sprint parameters using distance-time trace
#' (e.g., timing gates/photo cells)
#' @examples
#'
#' # Model Timing Gates (simple, without corrections)
#' df <- create_sprint_trace(MSS = 8, MAC = 6, distance = c(5, 10, 20, 30, 40))
#' m1 <- model_timing_gates(distance = df$distance, time = df$time)
#' m1
#' plot(m1)
#'
#' @export
model_timing_gates <- function(distance,
time,
weights = 1,
CV = NULL,
na.rm = FALSE,
...) {
# Estimation function
model_func <- function(train, test, ...) {
param_start <- list(MSS = 7, MAC = 7)
param_lower <- c(MSS = 0, MAC = 0)
param_upper <- c(MSS = Inf, MAC = Inf)
# Non-linear model
model <- minpack.lm::nlsLM(
time ~ predict_time_at_distance(distance, MSS, MAC),
data = train,
start = param_start,
lower = param_lower,
upper = param_upper,
weights = train$weight,
...
)
# Parameters
MSS <- stats::coef(model)[["MSS"]]
MAC <- stats::coef(model)[["MAC"]]
TAU <- MSS / MAC
PMAX <- (MSS * MAC) / 4
# Model fit
pred_time <- stats::predict(model, newdata = data.frame(distance = test$distance))
resid_time <- test$time - pred_time
return(list(
data = train,
model_info = list(
predictor = "distance",
target = "time"
),
model = model,
parameters = list(
MSS = MSS,
MAC = MAC,
TAU = TAU,
PMAX = PMAX
),
corrections = NULL,
predictions = list(
.predictor = test$distance,
.observed = test$time,
.predicted = pred_time,
.residual = resid_time
)
))
}
model_sprint(
df = data.frame(
distance = distance,
time = time,
weight = weights
),
CV = CV,
na.rm = na.rm,
model_func = model_func,
...
)
}
#' @rdname model_functions
#' @description \code{model_timing_gates_TC} estimates short sprint parameters using distance-time trace
#' (e.g., timing gates/photo cells), with additional time correction parameter \code{TC}
#' @examples
#'
#' # Model Timing Gates (with Time Correction)
#' df <- create_sprint_trace(MSS = 8, MAC = 6, distance = c(5, 10, 20, 30, 40), TC = 0.2)
#' m1 <- model_timing_gates_TC(distance = df$distance, time = df$time)
#' m1
#' plot(m1)
#'
#' @export
model_timing_gates_TC <- function(distance,
time,
weights = 1,
CV = NULL,
na.rm = FALSE,
...) {
# Estimation function
model_func <- function(train, test, ...) {
param_start <- list(MSS = 7, MAC = 7, TC = 0)
param_lower <- c(MSS = 0, MAC = 0, TC = -Inf)
param_upper <- c(MSS = Inf, MAC = Inf, TC = Inf)
# Non-linear model
model <- minpack.lm::nlsLM(
time ~ predict_time_at_distance(distance, MSS, MAC) + TC,
data = train,
start = param_start,
lower = param_lower,
upper = param_upper,
weights = train$weight,
...
)
# Parameters
MSS <- stats::coef(model)[["MSS"]]
MAC <- stats::coef(model)[["MAC"]]
TAU <- MSS / MAC
PMAX <- (MSS * MAC) / 4
# Correction
TC <- stats::coef(model)[["TC"]]
# Model fit
pred_time <- stats::predict(model, newdata = data.frame(distance = test$distance))
resid_time <- test$time - pred_time
return(list(
data = train,
model_info = list(
predictor = "distance",
target = "time"
),
model = model,
parameters = list(
MSS = MSS,
MAC = MAC,
TAU = TAU,
PMAX = PMAX
),
corrections = list(
TC = TC
),
predictions = list(
.predictor = test$distance,
.observed = test$time,
.predicted = pred_time,
.residual = resid_time
)
))
}
model_sprint(
df = data.frame(
distance = distance,
time = time,
weight = weights
),
CV = CV,
na.rm = na.rm,
model_func = model_func,
...
)
}
#' @rdname model_functions
#' @description \code{model_timing_gates_FD} estimates short sprint parameters using distance-time trace
#' (e.g., timing gates/photo cells), with additional estimated flying distance correction
#' parameter \code{FD}
#' @examples
#'
#' # Model Timing Gates (with Flying Distance Correction)
#' df <- create_sprint_trace(MSS = 8, MAC = 6, distance = c(5, 10, 20, 30, 40), FD = 0.5)
#' m1 <- model_timing_gates_FD(distance = df$distance, time = df$time)
#' m1
#' plot(m1)
#'
#' @export
model_timing_gates_FD <- function(distance,
time,
weights = 1,
CV = NULL,
na.rm = FALSE,
...) {
# Estimation function
model_func <- function(train, test, ...) {
param_start <- list(MSS = 7, MAC = 7, FD = 0)
param_lower <- c(MSS = 0, MAC = 0, FD = 0)
param_upper <- c(MSS = Inf, MAC = Inf, FD = Inf)
# Non-linear model
model <- minpack.lm::nlsLM(
time ~ predict_time_at_distance(distance + FD, MSS, MAC) - predict_time_at_distance(FD, MSS, MAC),
data = train,
start = param_start,
lower = param_lower,
upper = param_upper,
weights = train$weight,
...
)
# Parameters
MSS <- stats::coef(model)[["MSS"]]
MAC <- stats::coef(model)[["MAC"]]
TAU <- MSS / MAC
PMAX <- (MSS * MAC) / 4
# Correction
FD <- stats::coef(model)[["FD"]]
# Model fit
pred_time <- stats::predict(model, newdata = data.frame(distance = test$distance))
resid_time <- test$time - pred_time
return(list(
data = train,
model_info = list(
predictor = "distance",
target = "time"
),
model = model,
parameters = list(
MSS = MSS,
MAC = MAC,
TAU = TAU,
PMAX = PMAX
),
corrections = list(
FD = FD
),
predictions = list(
.predictor = test$distance,
.observed = test$time,
.predicted = pred_time,
.residual = resid_time
)
))
}
model_sprint(
df = data.frame(
distance = distance,
time = time,
weight = weights
),
CV = CV,
na.rm = na.rm,
model_func = model_func,
...
)
}
#' @rdname model_functions
#' @description \code{model_timing_gates_FD_fixed} estimates short sprint parameters using distance-time trace
#' (e.g., timing gates/photo cells), with additional flying distance correction parameter \code{FD} which
#' is fixed by the user
#' @param FD Flying distance parameter. Default is 0
#' @examples
#'
#' # Model Timing Gates (with Flying Distance Correction fixed)
#' df <- create_sprint_trace(MSS = 8, MAC = 6, distance = c(5, 10, 20, 30, 40), FD = 0.5)
#' m1 <- model_timing_gates_FD_fixed(distance = df$distance, time = df$time)
#' m1
#' plot(m1)
#'
#' @export
model_timing_gates_FD_fixed <- function(distance,
time,
weights = 1,
FD = 0,
CV = NULL,
na.rm = FALSE,
...) {
# Estimation function
model_func <- function(train, test, ...) {
param_start <- list(MSS = 7, MAC = 7)
param_lower <- c(MSS = 0, MAC = 0)
param_upper <- c(MSS = Inf, MAC = Inf)
# Add FD to train and test
train$FD <- FD
test$FD <- FD
# Non-linear model
model <- minpack.lm::nlsLM(
time ~ predict_time_at_distance(distance + FD, MSS, MAC) - predict_time_at_distance(FD, MSS, MAC),
data = train,
start = param_start,
lower = param_lower,
upper = param_upper,
weights = train$weight,
...
)
# Parameters
MSS <- stats::coef(model)[["MSS"]]
MAC <- stats::coef(model)[["MAC"]]
TAU <- MSS / MAC
PMAX <- (MSS * MAC) / 4
# Model fit
pred_time <- stats::predict(model, newdata = data.frame(distance = test$distance))
resid_time <- test$time - pred_time
return(list(
data = train,
model_info = list(
predictor = "distance",
target = "time",
user_FD = FD
),
model = model,
parameters = list(
MSS = MSS,
MAC = MAC,
TAU = TAU,
PMAX = PMAX
),
corrections = list(
FD = FD
),
predictions = list(
.predictor = test$distance,
.observed = test$time,
.predicted = pred_time,
.residual = resid_time
)
))
}
model_sprint(
df = data.frame(
distance = distance,
time = time,
weight = weights
),
CV = CV,
na.rm = na.rm,
model_func = model_func,
...
)
}
#' @rdname model_functions
#' @description \code{model_timing_gates_DC} estimates short sprint parameters using distance-time trace
#' (e.g., timing gates/photo cells), with additional distance correction parameter \code{DC}
#' @examples
#'
#' # Model Timing Gates (with Distance Correction)
#' df <- create_sprint_trace(MSS = 8, MAC = 6, distance = c(5, 10, 20, 30, 40), DC = 1.5)
#' m1 <- model_timing_gates_DC(distance = df$distance, time = df$time)
#' m1
#' plot(m1)
#'
#' @export
model_timing_gates_DC <- function(distance,
time,
weights = 1,
CV = NULL,
na.rm = FALSE,
...) {
# Estimation function
model_func <- function(train, test, ...) {
param_start <- list(MSS = 7, MAC = 7, DC = 0)
param_lower <- c(MSS = 0, MAC = 0, DC = -Inf)
param_upper <- c(MSS = Inf, MAC = Inf, DC = Inf)
# Non-linear model
model <- minpack.lm::nlsLM(
time ~ predict_time_at_distance(distance - DC, MSS, MAC),
data = train,
start = param_start,
lower = param_lower,
upper = param_upper,
weights = train$weight,
...
)
# Parameters
MSS <- stats::coef(model)[["MSS"]]
MAC <- stats::coef(model)[["MAC"]]
TAU <- MSS / MAC
PMAX <- (MSS * MAC) / 4
# Correction
DC <- stats::coef(model)[["DC"]]
# Model fit
pred_time <- stats::predict(model, newdata = data.frame(distance = test$distance))
resid_time <- test$time - pred_time
return(list(
data = train,
model_info = list(
predictor = "distance",
target = "time"
),
model = model,
parameters = list(
MSS = MSS,
MAC = MAC,
TAU = TAU,
PMAX = PMAX
),
corrections = list(
DC = DC
),
predictions = list(
.predictor = test$distance,
.observed = test$time,
.predicted = pred_time,
.residual = resid_time
)
))
}
model_sprint(
df = data.frame(
distance = distance,
time = time,
weight = weights
),
CV = CV,
na.rm = na.rm,
model_func = model_func,
...
)
}
#' @rdname model_functions
#' @description \code{model_timing_gates_TC_DC} estimates short sprint parameters using distance-time trace
#' (e.g., timing gates/photo cells), with additional time correction \code{TC} and
#' distance correction \code{DC} parameters
#' @examples
#'
#' # Model Timing Gates (with Time and Distance Corrections)
#' df <- create_sprint_trace(MSS = 8, MAC = 6, distance = c(5, 10, 20, 30, 40), TC = 0.25, DC = 1.5)
#' m1 <- model_timing_gates_TC_DC(distance = df$distance, time = df$time)
#' m1
#' plot(m1)
#'
#' @export
model_timing_gates_TC_DC <- function(distance,
time,
weights = 1,
CV = NULL,
na.rm = FALSE,
...) {
# Estimation function
model_func <- function(train, test, ...) {
param_start <- list(MSS = 7, MAC = 7, TC = 0, DC = 0)
param_lower <- c(MSS = 0, MAC = 0, TC = -Inf, DC = -Inf)
param_upper <- c(MSS = Inf, MAC = Inf, TC = Inf, DC = Inf)
# Non-linear model
model <- minpack.lm::nlsLM(
time ~ predict_time_at_distance(distance - DC, MSS, MAC) + TC,
data = train,
start = param_start,
lower = param_lower,
upper = param_upper,
weights = train$weight,
...
)
# Parameters
MSS <- stats::coef(model)[["MSS"]]
MAC <- stats::coef(model)[["MAC"]]
TAU <- MSS / MAC
PMAX <- (MSS * MAC) / 4
# Correction
TC <- stats::coef(model)[["TC"]]
DC <- stats::coef(model)[["DC"]]
# Model fit
pred_time <- stats::predict(model, newdata = data.frame(distance = test$distance))
resid_time <- test$time - pred_time
return(list(
data = train,
model_info = list(
predictor = "distance",
target = "time"
),
model = model,
parameters = list(
MSS = MSS,
MAC = MAC,
TAU = TAU,
PMAX = PMAX
),
corrections = list(
TC = TC,
DC = DC
),
predictions = list(
.predictor = test$distance,
.observed = test$time,
.predicted = pred_time,
.residual = resid_time
)
))
}
model_sprint(
df = data.frame(
distance = distance,
time = time,
weight = weights
),
CV = CV,
na.rm = na.rm,
model_func = model_func,
...
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.