The predictive value of a statistical model can often be improved by applying shrinkage methods. This can be achieved, e.g., by regularized regression or empirical Bayes approaches. Various types of shrinkage factors can also be estimated after a maximum likelihood. While global shrinkage modifies all regression coefficients by the same factor, parameterwise shrinkage factors differ between regression coefficients. With variables which are either highly correlated or associated with regard to contents, such as several columns of a design matrix describing a nonlinear effect, parameterwise shrinkage factors are not interpretable and a compromise between global and parameterwise shrinkage, termed 'joint shrinkage', is a useful extension. A computational shortcut to resamplingbased shrinkage factor estimation based on DFBETA residuals can be applied. Global, parameterwise and joint shrinkage for models fitted by lm(), glm(), coxph(), or mfp() is available.
Package details 


Author  Daniela Dunkler [aut, cre], Georg Heinze [aut] 
Date of publication  20160309 15:21:00 
Maintainer  Daniela Dunkler <[email protected]> 
License  GPL2 
Version  1.2.1 
Package repository  View on CRAN 
Installation 
Install the latest version of this package by entering the following in R:

Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.