Nothing
#' Calculate the Mean Squared Error
#'
#' Calculates the Mean Squared Error of the model estimates from the true value and the Monte Carlo standard error for this estimate.
#'
#' @param true_value The true value which is being estimated.
#' @param estimates A numeric vector containing the estimates from the model(s).
#' @param get A character vector containing the values returned by the function.
#' @param na.rm A logical value indicating whether NA values for `estimates` should be removed before MSE calculation.
#' @param ... Additional arguments to be ignored.
#'
#' @return A named vector containing the estimate and the Monte Carlo standard error for the bias.
#' @export
#'
#' @examples mse(true_value = 0, estimates = rnorm(100))
mse <- function(true_value, estimates, get = c("mse", "mse_mcse"), na.rm = FALSE, ...) {
assertthat::assert_that(length(!is.na(estimates)) > 0)
x <- c()
squared_errors <- (estimates - true_value)^2
if (na.rm) {
squared_errors <- squared_errors[!is.na(squared_errors)]
}
if (any(is.na(squared_errors))) {
x["mse"] <- NA
x["mse_mcse"] <- NA
return(x[get])
}
n <- length(squared_errors)
x["mse"] <- mean(squared_errors)
x["mse_mcse"] <- sqrt(sum((squared_errors - x["mse"])^2) / (n * (n - 1)))
return(x[get])
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.