Nothing
#' Simulate Data from the
#' Ornstein–Uhlenbeck Model
#' using a State Space Model Parameterization
#' (Individual-Varying Parameters)
#'
#' This function simulates data from the
#' Ornstein–Uhlenbeck model
#' using a state space model parameterization.
#' It assumes that the parameters can vary
#' across individuals.
#'
#' @details Parameters can vary across individuals
#' by providing a list of parameter values.
#' If the length of any of the parameters
#' (`mu0`,
#' `sigma0_l`,
#' `mu`,
#' `phi`,
#' `sigma_l`,
#' `nu`,
#' `lambda`,
#' `theta_l`,
#' `gamma`, or
#' `kappa`)
#' is less the `n`,
#' the function will cycle through the available values.
#'
#' @author Ivan Jacob Agaloos Pesigan
#'
#' @param type Integer.
#' State space model type.
#' See Details in [SimSSMOUFixed()] for more information.
#' @inheritParams SimSSMIVary
#' @param mu List of numeric vectors.
#' Each element of the list
#' is the long-term mean or equilibrium level
#' (\eqn{\boldsymbol{\mu}}).
#' @param phi List of numeric matrix.
#' Each element of the list
#' is the drift matrix
#' which represents the rate of change of the solution
#' in the absence of any random fluctuations
#' (\eqn{\boldsymbol{\Phi}}).
#' It also represents the rate of mean reversion,
#' determining how quickly the variable returns to its mean.
#' @param sigma_l List of numeric matrix.
#' Each element of the list
#' is the Cholesky factorization (`t(chol(sigma))`)
#' of the covariance matrix of volatility
#' or randomness in the process
#' \eqn{\boldsymbol{\Sigma}}.
#'
#' @inherit SimSSMFixed return
#' @inherit SimSSMOUFixed references
#' @inheritParams SimSSMLinSDEIVary
#'
#' @examples
#' # prepare parameters
#' # In this example, phi varies across individuals.
#' set.seed(42)
#' ## number of individuals
#' n <- 5
#' ## time points
#' time <- 50
#' delta_t <- 0.10
#' ## dynamic structure
#' p <- 2
#' mu0 <- list(
#' c(-3.0, 1.5)
#' )
#' sigma0 <- 0.001 * diag(p)
#' sigma0_l <- list(
#' t(chol(sigma0))
#' )
#' mu <- list(
#' c(5.76, 5.18)
#' )
#' phi <- list(
#' -0.1 * diag(p),
#' -0.2 * diag(p),
#' -0.3 * diag(p),
#' -0.4 * diag(p),
#' -0.5 * diag(p)
#' )
#' sigma <- matrix(
#' data = c(
#' 2.79,
#' 0.06,
#' 0.06,
#' 3.27
#' ),
#' nrow = p
#' )
#' sigma_l <- list(
#' t(chol(sigma))
#' )
#' ## measurement model
#' k <- 2
#' nu <- list(
#' rep(x = 0, times = k)
#' )
#' lambda <- list(
#' diag(k)
#' )
#' theta <- 0.001 * diag(k)
#' theta_l <- list(
#' t(chol(theta))
#' )
#' ## covariates
#' j <- 2
#' x <- lapply(
#' X = seq_len(n),
#' FUN = function(i) {
#' matrix(
#' data = stats::rnorm(n = time * j),
#' nrow = j,
#' ncol = time
#' )
#' }
#' )
#' gamma <- list(
#' diag(x = 0.10, nrow = p, ncol = j)
#' )
#' kappa <- list(
#' diag(x = 0.10, nrow = k, ncol = j)
#' )
#'
#' # Type 0
#' ssm <- SimSSMOUIVary(
#' n = n,
#' time = time,
#' delta_t = delta_t,
#' mu0 = mu0,
#' sigma0_l = sigma0_l,
#' mu = mu,
#' phi = phi,
#' sigma_l = sigma_l,
#' nu = nu,
#' lambda = lambda,
#' theta_l = theta_l,
#' type = 0
#' )
#'
#' plot(ssm)
#'
#' # Type 1
#' ssm <- SimSSMOUIVary(
#' n = n,
#' time = time,
#' delta_t = delta_t,
#' mu0 = mu0,
#' sigma0_l = sigma0_l,
#' mu = mu,
#' phi = phi,
#' sigma_l = sigma_l,
#' nu = nu,
#' lambda = lambda,
#' theta_l = theta_l,
#' type = 1,
#' x = x,
#' gamma = gamma
#' )
#'
#' plot(ssm)
#'
#' # Type 2
#' ssm <- SimSSMOUIVary(
#' n = n,
#' time = time,
#' delta_t = delta_t,
#' mu0 = mu0,
#' sigma0_l = sigma0_l,
#' mu = mu,
#' phi = phi,
#' sigma_l = sigma_l,
#' nu = nu,
#' lambda = lambda,
#' theta_l = theta_l,
#' type = 2,
#' x = x,
#' gamma = gamma,
#' kappa = kappa
#' )
#'
#' plot(ssm)
#'
#' @family Simulation of State Space Models Data Functions
#' @keywords simStateSpace sim ou
#' @export
SimSSMOUIVary <- function(n, time, delta_t = 1.0,
mu0, sigma0_l,
mu, phi, sigma_l,
nu, lambda, theta_l,
type = 0,
x = NULL, gamma = NULL, kappa = NULL) {
stopifnot(type %in% c(0, 1, 2))
covariates <- FALSE
if (type > 0) {
covariates <- TRUE
}
if (type == 0) {
data <- .SimSSMLinSDEIVary0(
n = n,
time = time,
delta_t = delta_t,
mu0 = rep(x = mu0, length.out = n),
sigma0_l = rep(x = sigma0_l, length.out = n),
iota = rep(x = mu, length.out = n),
phi = rep(x = phi, length.out = n),
sigma_l = rep(x = sigma_l, length.out = n),
nu = rep(x = nu, length.out = n),
lambda = rep(x = lambda, length.out = n),
theta_l = rep(x = theta_l, length.out = n),
ou = TRUE
)
}
if (type == 1) {
stopifnot(
!is.null(x),
!is.null(gamma)
)
data <- .SimSSMLinSDEIVary1(
n = n,
time = time,
delta_t = delta_t,
mu0 = rep(x = mu0, length.out = n),
sigma0_l = rep(x = sigma0_l, length.out = n),
iota = rep(x = mu, length.out = n),
phi = rep(x = phi, length.out = n),
sigma_l = rep(x = sigma_l, length.out = n),
nu = rep(x = nu, length.out = n),
lambda = rep(x = lambda, length.out = n),
theta_l = rep(x = theta_l, length.out = n),
x = rep(x = x, length.out = n),
gamma = rep(x = gamma, length.out = n),
ou = TRUE
)
}
if (type == 2) {
stopifnot(
!is.null(x),
!is.null(gamma),
!is.null(kappa)
)
data <- .SimSSMLinSDEIVary2(
n = n,
time = time,
delta_t = delta_t,
mu0 = rep(x = mu0, length.out = n),
sigma0_l = rep(x = sigma0_l, length.out = n),
iota = rep(x = mu, length.out = n),
phi = rep(x = phi, length.out = n),
sigma_l = rep(x = sigma_l, length.out = n),
nu = rep(x = nu, length.out = n),
lambda = rep(x = lambda, length.out = n),
theta_l = rep(x = theta_l, length.out = n),
x = rep(x = x, length.out = n),
gamma = rep(x = gamma, length.out = n),
kappa = rep(x = kappa, length.out = n),
ou = TRUE
)
}
out <- list(
call = match.call(),
args = list(
n = n, time = time,
mu0 = mu0, sigma0_l = sigma0_l,
iota = mu, phi = phi, sigma_l = sigma_l,
nu = nu, lambda = lambda, theta_l = theta_l,
type = type,
x = x, gamma = gamma, kappa = kappa,
ou = TRUE
),
model = list(
model = "ou",
covariates = covariates,
fixed = FALSE,
vary_i = TRUE
),
data = data,
fun = "SimSSMOUIVary"
)
class(out) <- c(
"simstatespace",
class(out)
)
return(
out
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.