Nothing
# These tests are only supposed to be run on developer's machine and
# package GitHub page not on CRAN (they take too long)
if (isTRUE(tolower(Sys.getenv("TEST_SINGLERCAPTURE_MULTICORE_DEVELOPER")) == "true")) {
expect_error(
estimatePopsize(
formula = TOTAL_SUB ~ .,
data = farmsubmission,
model = "zotpoisson",
method = "maxLik"
)
)
expect_silent(
xx <- estimatePopsize(
formula = TOTAL_SUB ~ .,
data = farmsubmission,
model = "zotpoisson",
controlMethod = controlMethod(
epsilon = 1e-6, silent = TRUE
)# testing silent
)
)
expect_silent(
summary(marginalFreq(xx), dropl5 = "group")
)
set.seed(123)
expect_silent(
xx <- estimatePopsize(
formula = TOTAL_SUB ~ .,
data = farmsubmission,
model = "zotpoisson",
popVar = "bootstrap",
controlMethod = controlMethod(epsilon = 1e-6, silent = TRUE),# testing silent
controlPopVar = controlPopVar(
B = 140,
bootType = "parametric",
bootstrapFitcontrol = controlMethod(
silent = TRUE,
epsilon = .Machine$double.eps
),
cores = 2L,
confType = "normal"
)
)
)
expect_silent(
predict(
xx,
type = "mean",
se.fit = TRUE
)
)
expect_warning(
xx <- estimatePopsize(
formula = TOTAL_SUB ~ log_size,
data = farmsubmission,
model = "zotnegbin",
controlModel = controlModel(alphaFormula = ~ C_TYPE),
controlMethod = controlMethod(
silent = TRUE, stepsize = .7,
verbose = 4, maxiter = 20
)
)
)
expect_silent(
predict(
xx,
type = "mean",
se.fit = TRUE
)
)
expect_silent(
predict(
xx,
type = "response",
se.fit = TRUE
)
)
expect_silent(
predict(
xx,
type = "link",
se.fit = TRUE
)
)
set.seed(123)
expect_silent(
xx <- estimatePopsize(
formula = capture ~ gender,
data = netherlandsimmigrant,
model = "zotgeom",
method = "optim",
popVar = "bootstrap",
controlMethod = controlMethod(epsilon = 1e-6, silent = TRUE),# testing silent
controlPopVar = controlPopVar(
B = 70,
cores = 2L,
bootstrapFitcontrol = controlMethod(),
bootType = "nonparametric",
confType = "basic"
)
)
)
expect_silent(
dfbeta(xx)
)
expect_silent(
dfbeta(xx, cores = 2L)
)
expect_silent(
predict(
xx,
type = "mean",
se.fit = TRUE
)
)
expect_silent(
estimatePopsize(
formula = TOTAL_SUB ~ .,
data = farmsubmission,
model = "oiztgeom",
popVar = "bootstrap",
controlModel = controlModel(omegaFormula = ~ .),
controlMethod = controlMethod(silent = TRUE),# testing silent
controlPopVar = controlPopVar(
B = 35,
cores = 2L,
bootstrapFitcontrol = controlMethod(),
bootType = "semiparametric"
)
)
)
df <- farmsubmission[, c(1,4)]
df$ww <- 0
### this is dplyr::count but slower and without dependencies
df <- aggregate(ww ~ ., df, FUN = length)
expect_warning(
xx <- estimatePopsize(
formula = TOTAL_SUB ~ C_TYPE,
data = df,
model = ztpoisson,
popVar = "bootstrap",
weights = df$ww,
controlMethod = controlMethod(
verbose = 5,
saveIRLSlogs = TRUE,
criterion = "reltol"
),
controlModel = controlModel(weightsAsCounts = TRUE),
controlPopVar = controlPopVar(
B = 70,
cores = 2L,
bootType = "semiparametric"
)
)
)
expect_true(
!is.null(
xx$fittingLog
)
)
expect_silent(
dfbeta(xx)
)
expect_silent(
dfbeta(xx, cores = 2L)
)
expect_silent(
estimatePopsize(
formula = TOTAL_SUB ~ C_TYPE,
data = df,
model = ztoipoisson,
popVar = "bootstrap",
weights = df$ww,
controlMethod = controlMethod(silent = TRUE),
controlModel = controlModel(weightsAsCounts = TRUE),
controlPopVar = controlPopVar(
B = 70,
cores = 2L,
bootType = "parametric"
)
)
)
expect_silent(
estimatePopsize(
formula = TOTAL_SUB ~ C_TYPE,
data = df,
model = ztoigeom,
popVar = "bootstrap",
weights = df$ww,
controlMethod = controlMethod(silent = TRUE),
controlModel = controlModel(weightsAsCounts = TRUE),
controlPopVar = controlPopVar(
B = 70,
cores = 2L,
bootType = "nonparametric"
)
)
)
expect_silent(
estimatePopsize(
formula = TOTAL_SUB ~ C_TYPE,
data = df,
model = chao,
popVar = "bootstrap",
weights = df$ww,
controlMethod = controlMethod(silent = TRUE),
controlModel = controlModel(weightsAsCounts = TRUE),
controlPopVar = controlPopVar(
B = 70,
bootType = "nonparametric"
)
)
)
expect_silent(
estimatePopsize(
formula = TOTAL_SUB ~ C_TYPE,
data = df,
model = zelterman,
popVar = "bootstrap",
weights = df$ww,
controlMethod = controlMethod(silent = TRUE),
controlModel = controlModel(weightsAsCounts = TRUE),
controlPopVar = controlPopVar(
B = 70,
bootType = "semiparametric"
)
)
)
expect_silent(
estimatePopsize(
formula = TOTAL_SUB ~ C_TYPE,
data = df,
model = ztgeom,
popVar = "bootstrap",
weights = df$ww,
controlMethod = controlMethod(silent = TRUE),
controlModel = controlModel(weightsAsCounts = TRUE),
controlPopVar = controlPopVar(
B = 70,
bootType = "parametric"
)
)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.