View source: R/equating.rasch.R
equating.rasch | R Documentation |
This function does the linking in the generalized
logistic item response model. Only item difficulties (b
item parameters) are allowed. Mean-mean linking and the methods
of Haebara and Stocking-Lord are implemented (Kolen & Brennan, 2004).
equating.rasch(x, y, theta=seq(-4, 4, len=100),
alpha1=0, alpha2=0)
x |
Matrix with two columns: First column items, second column item difficulties |
y |
Matrix with two columns: First columns item, second column item difficulties |
theta |
Vector of theta values at which the linking functions
should be evaluated. If a weighting according to a prespecified normal
distribution |
alpha1 |
Fixed |
alpha2 |
Fixed |
B.est |
Estimated linking constants according to the methods
|
descriptives |
Descriptives of the linking. The linking error
( |
anchor |
Original and transformed item parameters of anchor items |
transf.par |
Original and transformed item parameters of all items |
Kolen, M. J., & Brennan, R. L. (2004). Test Equating, Scaling, and Linking: Methods and Practices. New York: Springer.
For estimating standard errors (due to inference with respect to
the item domain) of this procedure see equating.rasch.jackknife
.
For linking several studies see linking.haberman
or
invariance.alignment
.
A robust alternative to mean-mean linking is implemented in
linking.robust
.
For linking under more general item response models see the plink package.
#############################################################################
# EXAMPLE 1: Linking item parameters of the PISA study
#############################################################################
data(data.pisaPars)
pars <- data.pisaPars
# linking the two studies with the Rasch model
mod <- sirt::equating.rasch(x=pars[,c("item","study1")], y=pars[,c("item","study2")])
## Mean.Mean Haebara Stocking.Lord
## 1 0.08828 0.08896269 0.09292838
## Not run:
#*** linking using the plink package
# The plink package is not available on CRAN anymore.
# You can download the package with
# utils::install.packages("plink", repos="http://www2.uaem.mx/r-mirror")
library(plink)
I <- nrow(pars)
pm <- plink::as.poly.mod(I)
# linking parameters
plink.pars1 <- list( "study1"=data.frame( 1, pars$study1, 0 ),
"study2"=data.frame( 1, pars$study2, 0 ) )
# the parameters are arranged in the columns:
# Discrimination, Difficulty, Guessing Parameter
# common items
common.items <- cbind("study1"=1:I,"study2"=1:I)
# number of categories per item
cats.item <- list( "study1"=rep(2,I), "study2"=rep(2,I))
# convert into plink object
x <- plink::as.irt.pars( plink.pars1, common.items, cat=cats.item,
poly.mod=list(pm,pm))
# linking using plink: first group is reference group
out <- plink::plink(x, rescale="MS", base.grp=1, D=1.7)
# summary for linking
summary(out)
## ------- group2/group1* -------
## Linking Constants
##
## A B
## Mean/Mean 1.000000 -0.088280
## Mean/Sigma 1.000000 -0.088280
## Haebara 1.000000 -0.088515
## Stocking-Lord 1.000000 -0.096610
# extract linked parameters
pars.out <- plink::link.pars(out)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.