sirt-package | R Documentation |
Supplementary functions for item response models aiming to complement existing R packages. The functionality includes among others multidimensional compensatory and noncompensatory IRT models (Reckase, 2009, <doi:10.1007/978-0-387-89976-3>), MCMC for hierarchical IRT models and testlet models (Fox, 2010, <doi:10.1007/978-1-4419-0742-4>), NOHARM (McDonald, 1982, <doi:10.1177/014662168200600402>), Rasch copula model (Braeken, 2011, <doi:10.1007/s11336-010-9190-4>; Schroeders, Robitzsch & Schipolowski, 2014, <doi:10.1111/jedm.12054>), faceted and hierarchical rater models (DeCarlo, Kim & Johnson, 2011, <doi:10.1111/j.1745-3984.2011.00143.x>), ordinal IRT model (ISOP; Scheiblechner, 1995, <doi:10.1007/BF02301417>), DETECT statistic (Stout, Habing, Douglas & Kim, 1996, <doi:10.1177/014662169602000403>), local structural equation modeling (LSEM; Hildebrandt, Luedtke, Robitzsch, Sommer & Wilhelm, 2016, <doi:10.1080/00273171.2016.1142856>).
The sirt package enables the estimation of following models:
Multidimensional marginal maximum likelihood estimation (MML)
of generalized logistic Rasch type models using the
generalized logistic link function (Stukel, 1988) can be conducted
with rasch.mml2
and the argument itemtype="raschtype"
.
This model also allows the estimation of the 4PL item
response model (Loken & Rulison, 2010).
Multiple group estimation, latent regression models and
plausible value imputation are supported. In addition, pseudo-likelihood
estimation for fractional item response data can be conducted.
Multidimensional noncompensatory, compensatory and partially compensatory
item response models for dichotomous item responses (Reckase, 2009) can be estimated
with the smirt
function and the options irtmodel="noncomp"
, irtmodel="comp"
and irtmodel="partcomp"
.
The unidimensional quotient model (Ramsay, 1989) can be estimated
using rasch.mml2
with itemtype="ramsay.qm"
.
Unidimensional nonparametric item response models can be estimated
employing MML estimation (Rossi, Wang & Ramsay, 2002) by making use of
rasch.mml2
with itemtype="npirt"
.
Kernel smoothing for item response function estimation (Ramsay, 1991)
is implemented in np.dich
.
The multidimensional IRT copula model (Braeken, 2011) can be applied
for handling local dependencies, see rasch.copula3
.
Unidimensional joint maximum likelihood estimation (JML) of the Rasch model
is possible with the rasch.jml
function. Bias correction methods
for item parameters are included in rasch.jml.jackknife1
and rasch.jml.biascorr
.
The multidimensional latent class Rasch and 2PL model (Bartolucci, 2007)
which employs a discrete trait distribution can be estimated
with rasch.mirtlc
.
The unidimensional 2PL rater facets model (Lincare, 1994) can be estimated
with rm.facets
. A hierarchical rater model based on
signal detection theory (DeCarlo, Kim & Johnson, 2011) can be conducted
with rm.sdt
. A simple latent class model for two exchangeable
raters is implemented in lc.2raters
. See Robitzsch and Steinfeld (2018)
for more details.
The discrete grade of membership model (Erosheva, Fienberg & Joutard, 2007)
and the Rasch grade of membership model can be estimated by gom.em
.
Some hierarchical IRT models and random item models for dichotomous
and normally distributed data (van den Noortgate, de Boeck & Meulders, 2003;
Fox & Verhagen, 2010) can be estimated with mcmc.2pno.ml
.
Unidimensional pairwise conditional likelihood estimation
(PCML; Zwinderman, 1995) is implemented in rasch.pairwise
or
rasch.pairwise.itemcluster
.
Unidimensional pairwise marginal likelihood estimation
(PMML; Renard, Molenberghs & Geys, 2004)
can be conducted using rasch.pml3
. In this function
local dependence can be handled by imposing residual error structure
or omitting item pairs within a dependent item cluster from the
estimation.
The function rasch.evm.pcm
estimates the multiple group
partial credit model based on the pairwise eigenvector approach
which avoids iterative estimation.
Some item response models in sirt can be estimated via
Markov Chain Monte Carlo (MCMC) methods. In mcmc.2pno
the two-parameter normal ogive model can be estimated. A hierarchical
version of this model (Janssen, Tuerlinckx, Meulders & de Boeck, 2000)
is implemented in mcmc.2pnoh
. The 3PNO testlet model
(Wainer, Bradlow & Wang, 2007; Glas, 2012) can be estimated with
mcmc.3pno.testlet
.
Some hierarchical IRT models and random item models
(van den Noortgate, de Boeck & Meulders, 2003) can be estimated
with mcmc.2pno.ml
.
For dichotomous response data, the free NOHARM software
(McDonald, 1982, 1997) estimates the multidimensional compensatory 3PL model and the function
R2noharm
runs NOHARM from within R. Note that NOHARM must be
downloaded from http://noharm.niagararesearch.ca/nh4cldl.html
at first. A pure R implementation of the NOHARM model with some extensions
can be found in noharm.sirt
.
The measurement theoretic founded nonparametric item
response models of Scheiblechner (1995, 1999) – the ISOP
and the ADISOP model – can be estimated with
isop.dich
or isop.poly
.
Item scoring within this theory can be conducted with
isop.scoring
.
The functional unidimensional item response model
(Ip et al., 2013) can be estimated with f1d.irt
.
The Rasch model can be estimated by variational approximation
(Rijmen & Vomlel, 2008) using rasch.va
.
The unidimensional probabilistic Guttman model (Proctor, 1970) can be
specified with prob.guttman
.
A jackknife method for the estimation of standard errors of the
weighted likelihood trait estimate (Warm, 1989) is available in
wle.rasch.jackknife
.
Model based reliability for dichotomous data can be calculated by the method
of Green and Yang (2009) with greenyang.reliability
and the
marginal true score method of Dimitrov (2003) using the function
marginal.truescore.reliability
.
Essential unidimensionality can be assessed by the DETECT
index (Stout, Habing, Douglas & Kim, 1996), see the function
conf.detect
.
Item parameters from several studies can be linked using the Haberman
method (Haberman, 2009) in linking.haberman
. See also
equating.rasch
and linking.robust
.
The alignment procedure (Asparouhov & Muthen, 2013)
invariance.alignment
is originally for comfirmatory factor
analysis and aims at obtaining approximate invariance.
Some person fit statistics in the Rasch model (Meijer & Sijtsma, 2001)
are included in personfit.stat
.
An alternative to the linear logistic test model (LLTM), the
so called least squares distance model for cognitive diagnosis
(LSDM; Dimitrov, 2007), can be estimated with the function
lsdm
.
Local structural equation models (LSEM) can be estimated with the
lsem.estimate
function (Hildebrandt et al., 2016).
Alexander Robitzsch [aut,cre] (<https://orcid.org/0000-0002-8226-3132>)
Maintainer: Alexander Robitzsch <robitzsch@ipn.uni-kiel.de>
Asparouhov, T., & Muthen, B. (2014). Multiple-group factor analysis alignment. Structural Equation Modeling, 21(4), 1-14. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/10705511.2014.919210")}
Bartolucci, F. (2007). A class of multidimensional IRT models for testing unidimensionality and clustering items. Psychometrika, 72, 141-157.
Braeken, J. (2011). A boundary mixture approach to violations of conditional independence. Psychometrika, 76(1), 57-76. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11336-010-9190-4")}
DeCarlo, T., Kim, Y., & Johnson, M. S. (2011). A hierarchical rater model for constructed responses, with a signal detection rater model. Journal of Educational Measurement, 48(3), 333-356. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/j.1745-3984.2011.00143.x")}
Dimitrov, D. (2003). Marginal true-score measures and reliability for binary items as a function of their IRT parameters. Applied Psychological Measurement, 27, 440-458.
Dimitrov, D. M. (2007). Least squares distance method of cognitive validation and analysis for binary items using their item response theory parameters. Applied Psychological Measurement, 31, 367-387.
Erosheva, E. A., Fienberg, S. E., & Joutard, C. (2007). Describing disability through individual-level mixture models for multivariate binary data. Annals of Applied Statistics, 1, 502-537.
Fox, J.-P. (2010). Bayesian item response modeling. New York: Springer. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/978-1-4419-0742-4")}
Fox, J.-P., & Verhagen, A.-J. (2010). Random item effects modeling for cross-national survey data. In E. Davidov, P. Schmidt, & J. Billiet (Eds.), Cross-cultural Analysis: Methods and Applications (pp. 467-488), London: Routledge Academic.
Fraser, C., & McDonald, R. P. (1988). NOHARM: Least squares item factor analysis. Multivariate Behavioral Research, 23, 267-269.
Glas, C. A. W. (2012). Estimating and testing the extended testlet model. LSAC Research Report Series, RR 12-03.
Green, S.B., & Yang, Y. (2009). Reliability of summed item scores using structural equation modeling: An alternative to coefficient alpha. Psychometrika, 74, 155-167.
Haberman, S. J. (2009). Linking parameter estimates derived from an item response model through separate calibrations. ETS Research Report ETS RR-09-40. Princeton, ETS. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1002/j.2333-8504.2009.tb02197.x")}
Hildebrandt, A., Luedtke, O., Robitzsch, A., Sommer, C., & Wilhelm, O. (2016). Exploring factor model parameters across continuous variables with local structural equation models. Multivariate Behavioral Research, 51(2-3), 257-278. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/00273171.2016.1142856")}
Ip, E. H., Molenberghs, G., Chen, S. H., Goegebeur, Y., & De Boeck, P. (2013). Functionally unidimensional item response models for multivariate binary data. Multivariate Behavioral Research, 48, 534-562.
Janssen, R., Tuerlinckx, F., Meulders, M., & de Boeck, P. (2000). A hierarchical IRT model for criterion-referenced measurement. Journal of Educational and Behavioral Statistics, 25, 285-306.
Jeon, M., & Rijmen, F. (2016). A modular approach for item response theory modeling with the R package flirt. Behavior Research Methods, 48(2), 742-755. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3758/s13428-015-0606-z")}
Linacre, J. M. (1994). Many-Facet Rasch Measurement. Chicago: MESA Press.
Loken, E. & Rulison, K. L. (2010). Estimation of a four-parameter item response theory model. British Journal of Mathematical and Statistical Psychology, 63, 509-525.
McDonald, R. P. (1982). Linear versus nonlinear models in item response theory. Applied Psychological Measurement, 6(4), 379-396. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1177/014662168200600402")}
McDonald, R. P. (1997). Normal-ogive multidimensional model. In W. van der Linden & R. K. Hambleton (1997): Handbook of modern item response theory (pp. 257-269). New York: Springer. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/978-1-4757-2691-6_15")}
Meijer, R. R., & Sijtsma, K. (2001). Methodology review: Evaluating person fit. Applied Psychological Measurement, 25, 107-135.
Proctor, C. H. (1970). A probabilistic formulation and statistical analysis for Guttman scaling. Psychometrika, 35, 73-78.
Ramsay, J. O. (1989). A comparison of three simple test theory models. Psychometrika, 54, 487-499.
Ramsay, J. O. (1991). Kernel smoothing approaches to nonparametric item characteristic curve estimation. Psychometrika, 56, 611-630.
Reckase, M. (2009). Multidimensional item response theory. New York: Springer. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/978-0-387-89976-3")}
Renard, D., Molenberghs, G., & Geys, H. (2004). A pairwise likelihood approach to estimation in multilevel probit models. Computational Statistics & Data Analysis, 44, 649-667.
Rijmen, F., & Vomlel, J. (2008). Assessing the performance of variational methods for mixed logistic regression models. Journal of Statistical Computation and Simulation, 78, 765-779.
Robitzsch, A., & Steinfeld, J. (2018). Item response models for human ratings: Overview, estimation methods, and implementation in R. Psychological Test and Assessment Modeling, 60(1), 101-139.
Rossi, N., Wang, X. & Ramsay, J. O. (2002). Nonparametric item response function estimates with the EM algorithm. Journal of Educational and Behavioral Statistics, 27, 291-317.
Rusch, T., Mair, P., & Hatzinger, R. (2013). Psychometrics with R: A Review of CRAN Packages for Item Response Theory. http://epub.wu.ac.at/4010/1/resrepIRThandbook.pdf
Scheiblechner, H. (1995). Isotonic ordinal probabilistic models (ISOP). Psychometrika, 60(2), 281-304. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/BF02301417")}
Scheiblechner, H. (1999). Additive conjoint isotonic probabilistic models (ADISOP). Psychometrika, 64, 295-316.
Schroeders, U., Robitzsch, A., & Schipolowski, S. (2014). A comparison of different psychometric approaches to modeling testlet structures: An example with C-tests. Journal of Educational Measurement, 51(4), 400-418. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/jedm.12054")}
Stout, W., Habing, B., Douglas, J., & Kim, H. R. (1996). Conditional covariance-based nonparametric multidimensionality assessment. Applied Psychological Measurement, 20(4), 331-354. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1177/014662169602000403")}
Stukel, T. A. (1988). Generalized logistic models. Journal of the American Statistical Association, 83(402), 426-431. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/01621459.1988.10478613")}
Uenlue, A., & Yanagida, T. (2011). R you ready for R?: The CRAN psychometrics task view. British Journal of Mathematical and Statistical Psychology, 64(1), 182-186. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1348/000711010X519320")}
van den Noortgate, W., De Boeck, P., & Meulders, M. (2003). Cross-classification multilevel logistic models in psychometrics. Journal of Educational and Behavioral Statistics, 28, 369-386.
Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54, 427-450.
Wainer, H., Bradlow, E. T., & Wang, X. (2007). Testlet response theory and its applications. Cambridge: Cambridge University Press.
Zwinderman, A. H. (1995). Pairwise parameter estimation in Rasch models. Applied Psychological Measurement, 19, 369-375.
For estimating multidimensional models for polytomous item responses see the mirt, flirt (Jeon & Rijmen, 2016) and TAM packages.
For conditional maximum likelihood estimation see the eRm package.
For pairwise estimation likelihood methods (also known as composite likelihood methods) see pln or lavaan.
The estimation of cognitive diagnostic models is possible using the CDM package.
For the multidimensional latent class IRT model see the MultiLCIRT package which also allows the estimation IRT models with polytomous item responses.
Latent class analysis can be carried out with covLCA, poLCA, BayesLCA, randomLCA or lcmm packages.
Markov Chain Monte Carlo estimation for item response models can also
be found in the MCMCpack package (see the MCMCirt
functions
therein).
See Rusch, Mair and Hatzinger (2013) and Uenlue and Yanagida (2011) for reviews of psychometrics packages in R.
##
## |-----------------------------------------------------------------|
## | sirt 0.40-4 (2013-11-26) |
## | Supplementary Item Response Theory |
## | Maintainer: Alexander Robitzsch <a.robitzsch at bifie.at > |
## | https://sites.google.com/site/alexanderrobitzsch/software |
## |-----------------------------------------------------------------|
##
## _/ _/
## _/_/_/ _/ _/_/ _/_/_/_/
## _/_/ _/ _/_/ _/
## _/_/ _/ _/ _/
## _/_/_/ _/ _/ _/_/
##
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.