View source: R/eigenvalues.manymatrices.R
eigenvalues.manymatrices | R Documentation |
This function computes the eigenvalue decomposition of N
symmetric positive definite matrices. The eigenvalues are computed
by the Rayleigh quotient method (Lange, 2010, p. 120). In addition,
the inverse matrix can be calculated.
eigenvalues.manymatrices(Sigma.all, itermax=10, maxconv=0.001,
inverse=FALSE )
Sigma.all |
An |
itermax |
Maximum number of iterations |
maxconv |
Convergence criterion for convergence of eigenvectors |
inverse |
A logical which indicates if the inverse matrix shall be calculated |
A list with following entries
lambda |
Matrix with eigenvalues |
U |
An |
logdet |
Vector of logarithm of determinants |
det |
Vector of determinants |
Sigma.inv |
Inverse matrix if |
Lange, K. (2010). Numerical Analysis for Statisticians. New York: Springer.
# define matrices
Sigma <- diag(1,3)
Sigma[ lower.tri(Sigma) ] <- Sigma[ upper.tri(Sigma) ] <- c(.4,.6,.8 )
Sigma1 <- Sigma
Sigma <- diag(1,3)
Sigma[ lower.tri(Sigma) ] <- Sigma[ upper.tri(Sigma) ] <- c(.2,.1,.99 )
Sigma2 <- Sigma
# collect matrices in a "super-matrix"
Sigma.all <- rbind( matrix( Sigma1, nrow=1, byrow=TRUE),
matrix( Sigma2, nrow=1, byrow=TRUE) )
Sigma.all <- Sigma.all[ c(1,1,2,2,1 ), ]
# eigenvalue decomposition
m1 <- sirt::eigenvalues.manymatrices( Sigma.all )
m1
# eigenvalue decomposition for Sigma1
s1 <- svd(Sigma1)
s1
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.