Nothing
#' @title Classify time series or data cubes
#' @name sits_classify
#' @author Rolf Simoes, \email{rolfsimoes@@gmail.com}
#' @author Gilberto Camara, \email{gilberto.camara@@inpe.br}
#' @author Felipe Carvalho, \email{lipecaso@@gmail.com}
#' @author Felipe Carlos, \email{efelipecarlos@@gmail.com}
#'
#' @description
#' This function classifies a set of time series or data cube using
#' a trained model prediction model created by \code{\link[sits]{sits_train}}.
#'
#' The \code{sits_classify} function takes three types of data as input
#' and produce there types of output. Users should call
#' \code{\link[sits]{sits_classify}} but be aware that the parameters
#' are different for each type of input.
#' \itemize{
#' \item{\code{\link[sits]{sits_classify.sits}} is called when the input is
#' a set of time series. The output is the same set
#' with the additional column \code{predicted}.}
#' \item{\code{\link[sits]{sits_classify.raster_cube}} is called when the
#' input is a regular raster data cube. The output is a probability cube,
#' which has the same tiles as the raster cube. Each tile contains
#' a multiband image; each band contains the probability that
#' each pixel belongs to a given class.
#' Probability cubes are objects of class "probs_cube".}
#' \item{\code{\link[sits]{sits_classify.vector_cube}} is called for
#' vector data cubes. Vector data cubes are produced when
#' closed regions are obtained from raster data cubes using
#' \code{\link[sits]{sits_segment}}. Classification of a vector
#' data cube produces a vector data structure with additional
#' columns expressing the class probabilities for each object.
#' Probability cubes for vector data cubes
#' are objects of class "probs_vector_cube".}
#' }
#'
#' @param data Data cube (tibble of class "raster_cube")
#' @param ml_model R model trained by \code{\link[sits]{sits_train}}
#' @param ... Other parameters for specific functions.
#' @return Time series with predicted labels for
#' each point (tibble of class "sits")
#' or a data cube with probabilities for each class
#' (tibble of class "probs_cube").
#'
#' @note
#' The main \code{sits} classification workflow has the following steps:
#' \enumerate{
#' \item{\code{\link[sits]{sits_cube}}: selects a ARD image collection from
#' a cloud provider.}
#' \item{\code{\link[sits]{sits_cube_copy}}: copies an ARD image collection
#' from a cloud provider to a local directory for faster processing.}
#' \item{\code{\link[sits]{sits_regularize}}: create a regular data cube
#' from an ARD image collection.}
#' \item{\code{\link[sits]{sits_apply}}: create new indices by combining
#' bands of a regular data cube (optional).}
#' \item{\code{\link[sits]{sits_get_data}}: extract time series
#' from a regular data cube based on user-provided labelled samples.}
#' \item{\code{\link[sits]{sits_train}}: train a machine learning
#' model based on image time series.}
#' \item{\code{\link[sits]{sits_classify}}: classify a data cube
#' using a machine learning model and obtain a probability cube.}
#' \item{\code{\link[sits]{sits_smooth}}: post-process a probability cube
#' using a spatial smoother to remove outliers and
#' increase spatial consistency.}
#' \item{\code{\link[sits]{sits_label_classification}}: produce a
#' classified map by selecting the label with the highest probability
#' from a smoothed cube.}
#' }
#'
#' SITS supports the following models:
#' \itemize{
#' \item{support vector machines: \code{\link[sits]{sits_svm}};}
#' \item{random forests: \code{\link[sits]{sits_rfor}};}
#' \item{extreme gradient boosting: \code{\link[sits]{sits_xgboost}};}
#' \item{light gradient boosting: \code{\link[sits]{sits_lightgbm}};}
#' \item{multi-layer perceptrons: \code{\link[sits]{sits_mlp}};}
#' \item{temporal CNN: \code{\link[sits]{sits_tempcnn}};}
#' \item{residual network encoders: \code{\link[sits]{sits_resnet}};}
#' \item{LSTM with convolutional networks: \code{\link[sits]{sits_lstm_fcn}};}
#' \item{temporal self-attention encoders:
#' \code{\link[sits]{sits_lighttae}} and
#' \code{\link[sits]{sits_tae}}.}
#' }
#'
#' Please refer to the sits documentation available in
#' \url{https://e-sensing.github.io/sitsbook/} for detailed examples.
#'
#' @export
sits_classify <- function(data, ml_model, ...) {
UseMethod("sits_classify", data)
}
#' @title Classify a set of time series
#' @name sits_classify.sits
#' @description
#' \code{\link[sits]{sits_classify.sits}} is called when the input is
#' a set of time series. The output is the same set
#' with the additional column \code{predicted}.
#'
#' @param data Set of time series ("sits tibble")
#' @param ml_model R model trained by \code{\link[sits]{sits_train}}
#' (closure of class "sits_model")
#' @param ... Other parameters for specific functions.
#' @param filter_fn Smoothing filter to be applied - optional
#' (closure containing object of class "function").
#' @param impute_fn Imputation function to remove NA.
#' @param multicores Number of cores to be used for classification
#' (integer, min = 1, max = 2048).
#' @param gpu_memory Memory available in GPU in GB (default = 4)
#' @param batch_size Batch size for GPU classification.
#' @param progress Logical: Show progress bar?
#'
#' @return Time series with predicted labels for
#' each point (tibble of class "sits").
#' @note
#' Parameter \code{filter_fn} specifies a smoothing filter
#' to be applied to each time series for reducing noise. Currently, options
#' are Savitzky-Golay (see \code{\link[sits]{sits_sgolay}}) and Whittaker
#' (see \code{\link[sits]{sits_whittaker}}) filters. Note that this
#' parameter should also have been applied to the training set to obtain
#' the model.
#'
#' Parameter \code{impute_fn} defines a 1D function that will be used
#' to interpolate NA values in each time series. Currently sits supports
#' the \code{\link{impute_linear}} function, but users can define
#' imputation functions which are defined externally.
#'
#' Parameter \code{multicores} defines the number of cores
#' used for processing. We recommend using as much memory as possible.
#'
#' When using a GPU for deep learning, \code{gpu_memory} indicates the
#' memory of the graphics card which is available for processing.
#' The parameter \code{batch_size} defines the size of the matrix
#' (measured in number of rows) which is sent to the GPU for classification.
#' Users can test different values of \code{batch_size} to
#' find out which one best fits their GPU architecture.
#'
#' It is not possible to have an exact idea of the size of Deep Learning
#' models in GPU memory, as the complexity of the model and factors
#' such as CUDA Context increase the size of the model in memory.
#' Therefore, we recommend that you leave at least 1GB free on the
#' video card to store the Deep Learning model that will be used.
#'
#' For users of Apple M3 chips or similar with a Neural Engine, be
#' aware that these chips share memory between the GPU and the CPU.
#' Tests indicate that the \code{memsize}
#' should be set to half to the total memory and the \code{batch_size}
#' parameter should be a small number (we suggest the value of 64).
#' Be aware that increasing these parameters may lead to memory
#' conflicts.
#' @examples
#' if (sits_run_examples()) {
#' # Example of classification of a time series
#' # Retrieve the samples for Mato Grosso
#' # train a random forest model
#' rf_model <- sits_train(samples_modis_ndvi, ml_method = sits_rfor)
#'
#' # classify the point
#' point_ndvi <- sits_select(point_mt_6bands, bands = c("NDVI"))
#' point_class <- sits_classify(
#' data = point_ndvi, ml_model = rf_model
#' )
#' plot(point_class)
#' }
#' @export
sits_classify.sits <- function(data,
ml_model,
...,
filter_fn = NULL,
impute_fn = impute_linear(),
multicores = 2L,
gpu_memory = 4L,
batch_size = 2L^gpu_memory,
progress = TRUE) {
# set caller for error messages
.check_set_caller("sits_classify_sits")
# Pre-conditions
.check_samples_ts(data)
.check_is_sits_model(ml_model)
.check_model_has_stats(ml_model)
.check_int_parameter(multicores, min = 1L, max = 2048L)
progress <- .message_progress(progress)
.check_function(impute_fn)
.check_filter_fn(filter_fn)
# save batch_size for later use
sits_env[["batch_size"]] <- batch_size
# Update multicores
multicores <- .ml_update_multicores(ml_model, multicores)
# Do classification
.classify_ts(
samples = data,
ml_model = ml_model,
filter_fn = filter_fn,
impute_fn = impute_fn,
multicores = multicores,
gpu_memory = gpu_memory,
progress = progress
)
}
#' @title Classify a regular raster cube
#' @name sits_classify.raster_cube
#' @description
#' Called when the input is a regular raster data cube.
#' The output is a probability cube,
#' which has the same tiles as the raster cube. Each tile contains
#' a multiband image; each band contains the probability that
#' each pixel belongs to a given class.
#' Probability cubes are objects of class "probs_cube".
#' @param data Data cube (tibble of class "raster_cube")
#' @param ml_model R model trained by \code{\link[sits]{sits_train}}
#' @param ... Other parameters for specific functions.
#' @param roi Region of interest (either an sf object, shapefile,
#' or a numeric vector in WGS 84 with named XY values
#' ("xmin", "xmax", "ymin", "ymax") or
#' named lat/long values
#' ("lon_min", "lat_min", "lon_max", "lat_max").
#' @param exclusion_mask Areas to be excluded from the classification
#' process. It can be defined by a sf object or by a
#' shapefile.
#' @param filter_fn Smoothing filter to be applied - optional
#' (closure containing object of class "function").
#' @param impute_fn Imputation function to remove NA.
#' @param start_date Starting date for the classification
#' (Date in YYYY-MM-DD format).
#' @param end_date Ending date for the classification
#' (Date in YYYY-MM-DD format).
#' @param memsize Memory available for classification in GB
#' (integer, min = 1, max = 16384).
#' @param multicores Number of cores to be used for classification
#' (integer, min = 1, max = 2048).
#' @param gpu_memory Memory available in GPU in GB (default = 4)
#' @param batch_size Batch size for GPU classification.
#' @param output_dir Directory for output file.
#' @param version Version of the output.
#' @param verbose Logical: print information about processing time?
#' @param progress Logical: Show progress bar?
#'
#' @return Time series with predicted labels for
#' each point (tibble of class "sits")
#' or a data cube with probabilities for each class
#' (tibble of class "probs_cube").
#'
#' @note
#' The \code{roi} parameter defines a region of interest. Either:
#' \enumerate{
#' \item{A path to a shapefile with polygons;}
#' \item{An \code{sf} object with POLYGON or MULTIPOLYGON geometry;}
#' \item{A named XY vector (\code{xmin}, \code{xmax}, \code{ymin},
#' \code{ymax}) in WGS84;}
#' \item{A name lat/long vector (\code{lon_min}, \code{lon_max},
#' \code{lat_min}, \code{lat_max}); }
#' }
#'
#' Parameter \code{filter_fn} parameter specifies a smoothing filter
#' to be applied to each time series for reducing noise. Currently, options
#' are Savitzky-Golay (see \code{\link[sits]{sits_sgolay}}) and Whittaker
#' (see \code{\link[sits]{sits_whittaker}}) filters.
#'
#' Parameter \code{impute_fn} defines a 1D function that will be used
#' to interpolate NA values in each time series. Currently sits supports
#' the \code{\link{impute_linear}} function, but users can define
#' imputation functions which are defined externally.
#'
#' Parameter \code{memsize} controls the amount of memory available
#' for classification, while \code{multicores} defines the number of cores
#' used for processing. We recommend using as much memory as possible.
#'
#' Parameter \code{exclusion_mask} defines a region that will not be
#' classify. The region can be defined by multiple polygons.
#' Either a path to a shapefile with polygons or
#' a \code{sf} object with POLYGON or MULTIPOLYGON geometry;
#'
#' When using a GPU for deep learning, \code{gpu_memory} indicates the
#' memory of the graphics card which is available for processing.
#' The parameter \code{batch_size} defines the size of the matrix
#' (measured in number of rows) which is sent to the GPU for classification.
#' Users can test different values of \code{batch_size} to
#' find out which one best fits their GPU architecture.
#'
#' It is not possible to have an exact idea of the size of Deep Learning
#' models in GPU memory, as the complexity of the model and factors
#' such as CUDA Context increase the size of the model in memory.
#' Therefore, we recommend that you leave at least 1GB free on the
#' video card to store the Deep Learning model that will be used.
#'
#' For users of Apple M3 chips or similar with a Neural Engine, be
#' aware that these chips share memory between the GPU and the CPU.
#' Tests indicate that the \code{memsize}
#' should be set to half to the total memory and the \code{batch_size}
#' parameter should be a small number (we suggest the value of 64).
#' Be aware that increasing these parameters may lead to memory
#' conflicts.
#'
#' @examples
#' if (sits_run_examples()) {
#' # Retrieve the samples for Mato Grosso
#' # train a random forest model
#' rf_model <- sits_train(samples_modis_ndvi, ml_method = sits_rfor)
#' # Example of classification of a data cube
#' # create a data cube from local files
#' data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
#' cube <- sits_cube(
#' source = "BDC",
#' collection = "MOD13Q1-6.1",
#' data_dir = data_dir
#' )
#' # classify a data cube
#' probs_cube <- sits_classify(
#' data = cube,
#' ml_model = rf_model,
#' output_dir = tempdir(),
#' version = "classify"
#' )
#' # label the probability cube
#' label_cube <- sits_label_classification(
#' probs_cube,
#' output_dir = tempdir(),
#' version = "ex_classify"
#' )
#' # plot the classified image
#' plot(label_cube)
#' }
#' @export
sits_classify.raster_cube <- function(data,
ml_model, ...,
roi = NULL,
exclusion_mask = NULL,
filter_fn = NULL,
impute_fn = impute_linear(),
start_date = NULL,
end_date = NULL,
memsize = 8L,
multicores = 2L,
gpu_memory = 4L,
batch_size = 2L^gpu_memory,
output_dir,
version = "v1",
verbose = FALSE,
progress = TRUE) {
# set caller for error messages
.check_set_caller("sits_classify_raster")
# preconditions
.check_is_raster_cube(data)
.check_cube_is_regular(data)
.check_is_sits_model(ml_model)
.check_model_has_stats(ml_model)
.check_int_parameter(memsize, min = 1L)
.check_int_parameter(multicores, min = 1L)
.check_int_parameter(gpu_memory, min = 1L)
.check_output_dir(output_dir)
# preconditions - impute and filter functions
.check_function(impute_fn)
.check_filter_fn(filter_fn)
# version is case-insensitive in sits
version <- .message_version(version)
# documentation mode? progress is FALSE
progress <- .message_progress(progress)
# documentation mode? verbose is FALSE
verbose <- .message_verbose(verbose)
# Spatial filter
if (.has(roi)) {
roi <- .roi_as_sf(roi)
data <- .cube_filter_spatial(cube = data, roi = roi)
}
# Exclusion mask
if (.has(exclusion_mask)) {
exclusion_mask <- .mask_as_sf(exclusion_mask)
}
# Temporal filter
start_date <- .default(start_date, .cube_start_date(data))
end_date <- .default(end_date, .cube_end_date(data))
data <- .cube_filter_interval(
cube = data, start_date = start_date, end_date = end_date
)
# save batch_size for later use
sits_env[["batch_size"]] <- batch_size
# Retrieve the samples from the model
samples <- .ml_samples(ml_model)
# Do the samples and tile match their timeline length?
.check_match_timeline(samples = samples, tile = data)
# Do the samples and tile match their bands?
.check_match_bands(samples = samples, tile = data)
# By default, base bands is null.
base_bands <- NULL
if (.cube_is_base(data)) {
# Get base bands
base_bands <- intersect(
.ml_bands(ml_model), .cube_bands(.cube_base_info(data))
)
}
# get non-base bands
bands <- setdiff(.ml_bands(ml_model), base_bands)
# Update multicores for models with internal parallel processing
multicores <- .ml_update_multicores(ml_model, multicores)
# The following functions define optimal parameters for parallel processing
# Get block size
block <- .raster_file_blocksize(.raster_open_rast(.tile_path(data)))
# Check minimum memory needed to process one block
job_block_memsize <- .jobs_block_memsize(
block_size = .block_size(block = block, overlap = 0),
npaths = (
length(.tile_paths(data, bands)) +
length(.ml_labels(ml_model)) +
ifelse(
test = .cube_is_base(data),
yes = length(.tile_paths(.cube_base_info(data), base_bands)),
no = 0
)
),
nbytes = 8,
proc_bloat = .conf("processing_bloat")
)
# Update multicores parameter based on size of a single block
multicores <- .jobs_max_multicores(
job_block_memsize = job_block_memsize,
memsize = memsize,
multicores = multicores
)
# Update block parameter based on the size of memory and number of cores
block <- .jobs_optimal_block(
job_block_memsize = job_block_memsize,
block = block,
image_size = .tile_size(.tile(data)),
memsize = memsize,
multicores = multicores
)
# Prepare parallel processing
.parallel_start(
workers = multicores, log = verbose,
output_dir = output_dir
)
on.exit(.parallel_stop(), add = TRUE)
# Show processing time information
start_time <- .classify_verbose_start(verbose, block)
on.exit(.classify_verbose_end(verbose, start_time), add = TRUE)
# Classification
# Process each tile sequentially
.cube_foreach_tile(data, function(tile) {
# Classify the data
.classify_tile(
tile = tile,
out_band = "probs",
bands = bands,
base_bands = base_bands,
ml_model = ml_model,
block = block,
roi = roi,
exclusion_mask = exclusion_mask,
filter_fn = filter_fn,
impute_fn = impute_fn,
output_dir = output_dir,
version = version,
verbose = verbose,
progress = progress
)
})
}
#' @title Classify a segmented data cube
#' @name sits_classify.segs_cube
#' @description
#' This function is called when the input is a vector data cube.
#' Vector data cubes are produced when closed regions are obtained
#' from raster data cubes using
#' \code{\link[sits]{sits_segment}}. Classification of a vector
#' data cube produces a vector data structure with additional
#' columns expressing the class probabilities for each segment.
#' Probability cubes for vector data cubes
#' are objects of class "probs_vector_cube".
#'
#' @param data Data cube (tibble of class "raster_cube")
#' @param ml_model R model trained by \code{\link[sits]{sits_train}}
#' (closure of class "sits_model")
#' @param ... Other parameters for specific functions.
#' @param roi Region of interest (either an sf object, shapefile,
#' or a numeric vector in WGS 84 with named XY values
#' ("xmin", "xmax", "ymin", "ymax") or
#' named lat/long values
#' ("lon_min", "lat_min", "lon_max", "lat_max").
#' @param filter_fn Smoothing filter to be applied - optional
#' (closure containing object of class "function").
#' @param impute_fn Imputation function to remove NA.
#' @param start_date Starting date for the classification
#' (Date in YYYY-MM-DD format).
#' @param end_date Ending date for the classification
#' (Date in YYYY-MM-DD format).
#' @param memsize Memory available for classification in GB
#' (integer, min = 1, max = 16384).
#' @param multicores Number of cores to be used for classification
#' (integer, min = 1, max = 2048).
#' @param gpu_memory Memory available in GPU in GB (default = 4)
#' @param batch_size Batch size for GPU classification.
#' @param n_sam_pol Number of time series per segment to be classified
#' (integer, min = 10, max = 50).
#' @param output_dir Directory for output file.
#' @param version Version of the output.
#' @param verbose Logical: print information about processing time?
#' @param progress Logical: Show progress bar?
#'
#' @return Vector data cube with probabilities for each class
#' included in new columns of the tibble.
#' (tibble of class "probs_vector_cube").
#'
#' @note
#' The \code{roi} parameter defines a region of interest. Either:
#' \enumerate{
#' \item{A path to a shapefile with polygons;}
#' \item{An \code{sf} object with POLYGON or MULTIPOLYGON geometry;}
#' \item{A named XY vector (\code{xmin}, \code{xmax}, \code{ymin},
#' \code{ymax}) in WGS84;}
#' \item{A name lat/long vector (\code{lon_min}, \code{lon_max},
#' \code{lat_min}, \code{lat_max}); }
#' }
#'
#' Parameter \code{filter_fn} parameter specifies a smoothing filter
#' to be applied to each time series for reducing noise. Currently, options
#' are Savitzky-Golay (see \code{\link[sits]{sits_sgolay}}) and Whittaker
#' (see \code{\link[sits]{sits_whittaker}}) filters.
#'
#' Parameter \code{impute_fn} defines a 1D function that will be used
#' to interpolate NA values in each time series. Currently sits supports
#' the \code{\link{impute_linear}} function, but users can define
#' imputation functions which are defined externally.
#'
#' Parameter \code{memsize} controls the amount of memory available
#' for classification, while \code{multicores} defines the number of cores
#' used for processing. We recommend using as much memory as possible.
#'
#' For classifying vector data cubes created by
#' \code{\link[sits]{sits_segment}},
#' \code{n_sam_pol} controls is the number of time series to be
#' classified per segment.
#'
#' When using a GPU for deep learning, \code{gpu_memory} indicates the
#' memory of the graphics card which is available for processing.
#' The parameter \code{batch_size} defines the size of the matrix
#' (measured in number of rows) which is sent to the GPU for classification.
#' Users can test different values of \code{batch_size} to
#' find out which one best fits their GPU architecture.
#'
#' It is not possible to have an exact idea of the size of Deep Learning
#' models in GPU memory, as the complexity of the model and factors
#' such as CUDA Context increase the size of the model in memory.
#' Therefore, we recommend that you leave at least 1GB free on the
#' video card to store the Deep Learning model that will be used.
#'
#' For users of Apple M3 chips or similar with a Neural Engine, be
#' aware that these chips share memory between the GPU and the CPU.
#' Tests indicate that the \code{memsize}
#' should be set to half to the total memory and the \code{batch_size}
#' parameter should be a small number (we suggest the value of 64).
#' Be aware that increasing these parameters may lead to memory
#' conflicts.
#'
#' Please refer to the sits documentation available in
#' \url{https://e-sensing.github.io/sitsbook/} for detailed examples.
#' @examples
#' if (sits_run_examples()) {
#' # train a random forest model
#' rf_model <- sits_train(samples_modis_ndvi, ml_method = sits_rfor)
#' # Example of classification of a data cube
#' # create a data cube from local files
#' data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
#' cube <- sits_cube(
#' source = "BDC",
#' collection = "MOD13Q1-6.1",
#' data_dir = data_dir
#' )
#' # segment the image
#' segments <- sits_segment(
#' cube = cube,
#' seg_fn = sits_slic(
#' step = 5,
#' compactness = 1,
#' dist_fun = "euclidean",
#' avg_fun = "median",
#' iter = 50,
#' minarea = 10,
#' verbose = FALSE
#' ),
#' output_dir = tempdir()
#' )
#' # Create a classified vector cube
#' probs_segs <- sits_classify(
#' data = segments,
#' ml_model = rf_model,
#' output_dir = tempdir(),
#' multicores = 4,
#' n_sam_pol = 15,
#' version = "segs"
#' )
#' # Create a labelled vector cube
#' class_segs <- sits_label_classification(
#' cube = probs_segs,
#' output_dir = tempdir(),
#' multicores = 2,
#' memsize = 4,
#' version = "segs_classify"
#' )
#' # plot class_segs
#' plot(class_segs)
#' }
#' @export
sits_classify.vector_cube <- function(data,
ml_model, ...,
roi = NULL,
filter_fn = NULL,
impute_fn = impute_linear(),
start_date = NULL,
end_date = NULL,
memsize = 8L,
multicores = 2L,
gpu_memory = 4L,
batch_size = 2L^gpu_memory,
output_dir,
version = "v1",
n_sam_pol = 15L,
verbose = FALSE,
progress = TRUE) {
# set caller for error messages
.check_set_caller("sits_classify_segs")
# preconditions
.check_is_vector_cube(data)
.check_is_sits_model(ml_model)
.check_model_has_stats(ml_model)
.check_int_parameter(n_sam_pol, min = 5L, allow_null = TRUE)
.check_int_parameter(memsize, min = 1L, max = 16384L)
.check_int_parameter(multicores, min = 1L, max = 2048L)
.check_output_dir(output_dir)
# preconditions - impute and filter functions
.check_function(impute_fn)
.check_filter_fn(filter_fn)
# version is case-insensitive in sits
version <- .message_version(version)
# documentation mode? progress is FALSE
progress <- .message_progress(progress)
# save GPU memory info for later use
sits_env[["batch_size"]] <- batch_size
# Spatial filter
if (.has(roi)) {
roi <- .roi_as_sf(roi)
data <- .cube_filter_spatial(cube = data, roi = roi)
}
# Temporal filter
start_date <- .default(start_date, .cube_start_date(data))
end_date <- .default(end_date, .cube_end_date(data))
data <- .cube_filter_interval(
cube = data, start_date = start_date, end_date = end_date
)
# Check if cube has a base band
base_bands <- NULL
if (.cube_is_base(data)) {
base_bands <- intersect(
.ml_bands(ml_model), .cube_bands(.cube_base_info(data))
)
}
# get non-base bands
bands <- setdiff(.ml_bands(ml_model), base_bands)
# Update multicores for models with internal parallel processing
multicores <- .ml_update_multicores(ml_model, multicores)
# The following functions define optimal parameters for parallel processing
# Get block size
block <- .raster_file_blocksize(.raster_open_rast(.tile_path(data)))
# Check minimum memory needed to process one block
job_block_memsize <- .jobs_block_memsize(
block_size = .block_size(block = block, overlap = 0L),
npaths = length(.tile_paths(data)) + length(.ml_labels(ml_model)),
nbytes = 8L,
proc_bloat = .conf("processing_bloat")
)
# Update multicores parameter based on size of a single block
multicores <- .jobs_max_multicores(
job_block_memsize = job_block_memsize,
memsize = memsize,
multicores = multicores
)
# Update block parameter to find optimal size
# considering kind of model and use of CPU or GPU
block <- .jobs_optimal_block(
job_block_memsize = job_block_memsize,
block = block,
image_size = .tile_size(.tile(data)),
memsize = memsize,
multicores = multicores
)
# Prepare parallel processing
.parallel_start(
workers = multicores, log = verbose,
output_dir = output_dir
)
on.exit(.parallel_stop(), add = TRUE)
# Classification
# Process each tile sequentially
.cube_foreach_tile(data, function(tile) {
# Classify all the segments for each tile
.classify_vector_tile(
tile = tile,
bands = bands,
base_bands = base_bands,
ml_model = ml_model,
block = block,
roi = roi,
filter_fn = filter_fn,
impute_fn = impute_fn,
n_sam_pol = n_sam_pol,
multicores = multicores,
memsize = memsize,
gpu_memory = gpu_memory,
version = version,
output_dir = output_dir,
progress = progress
)
})
}
#' @rdname sits_classify
#' @export
sits_classify.tbl_df <- function(data, ml_model, ...) {
data <- tibble::as_tibble(data)
if (all(.conf("sits_cube_cols") %in% colnames(data))) {
data <- .cube_find_class(data)
} else if (all(.conf("sits_tibble_cols") %in% colnames(data))) {
class(data) <- c("sits", class(data))
} else {
stop(.conf("messages", "sits_classify_tbl_df"))
}
sits_classify(data, ml_model, ...)
}
#' @rdname sits_classify
#' @export
sits_classify.derived_cube <- function(data, ml_model, ...) {
stop(.conf("messages", "sits_classify_derived_cube"))
}
#' @rdname sits_classify
#' @export
sits_classify.default <- function(data, ml_model, ...) {
data <- tibble::as_tibble(data)
if (all(.conf("sits_cube_cols") %in% colnames(data))) {
data <- .cube_find_class(data)
} else if (all(.conf("sits_tibble_cols") %in% colnames(data))) {
class(data) <- c("sits", class(data))
} else {
stop(.conf("messages", "sits_classify_default"))
}
sits_classify(data, ml_model, ...)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.