Summary of Bayesian Models as HTML Table"

knitr::opts_chunk$set(
  collapse = TRUE, 
  comment = "#>", 
  message = FALSE
)

if (!requireNamespace("insight", quietly = TRUE) ||
    !requireNamespace("httr", quietly = TRUE) ||
    !requireNamespace("brms", quietly = TRUE)) {
  knitr::opts_chunk$set(eval = FALSE)
} else {
  knitr::opts_chunk$set(eval = TRUE)
}

This vignette shows examples for using tab_model() to create HTML tables for mixed models. Basically, tab_model() behaves in a very similar way for mixed models as for other, simple regression models, as shown in this vignette.

# load required packages
library(sjPlot)
library(insight)
library(httr)
library(brms)

# load sample models

# zinb <- read.csv("http://stats.idre.ucla.edu/stat/data/fish.csv")
# set.seed(123)
# m1 <- brm(bf(
#     count ~ persons + child + camper + (1 | persons),
#     zi ~ child + camper + (1 | persons)
#   ),
#   data = zinb,
#   family = zero_inflated_poisson()
# )
m1 <- insight::download_model("brms_zi_2")

# data(epilepsy)
# set.seed(123)
# epilepsy$visit <- as.numeric(epilepsy$visit)
# epilepsy$Base2 <- sample(epilepsy$Base, nrow(epilepsy), replace = TRUE)
# f1 <- bf(Base ~ zAge + count + (1 |ID| patient))
# f2 <- bf(Base2 ~ zAge + Trt + (1 |ID| patient))
# m2 <- brm(f1 + f2 + set_rescor(FALSE), data = epilepsy)
m2 <- insight::download_model("brms_mv_3")

Bayesian models summaries as HTML table

For Bayesian regression models, some of the differences to the table output from simple models or mixed models of tab_models() are the use of Highest Density Intervals instead of confidence intervals, the Bayes-R-squared values, and a different "point estimate" (which is, by default, the median from the posterior draws).

tab_model(m1)

Multivariate response models

For multivariate response models, like mediator-analysis-models, it is recommended to print just one model in the table, as each regression is displayed as own "model" in the output.

tab_model(m2)

Show two Credible Interval-column

To show a second CI-column, use show.ci50 = TRUE.

tab_model(m2, show.ci50 = TRUE)

Mixing multivariate and univariate response models

When both multivariate and univariate response models are displayed in one table, a column Response is added for the multivariate response model, to indicate the different outcomes.

tab_model(m1, m2)


Try the sjPlot package in your browser

Any scripts or data that you put into this service are public.

sjPlot documentation built on July 10, 2021, 5:07 p.m.