sjstats: Collection of Convenient Functions for Common Statistical Computations
Version 0.10.0

Collection of convenient functions for common statistical computations, which are not directly provided by R's base or stats packages. This package aims at providing, first, shortcuts for statistical measures, which otherwise could only be calculated with additional effort (like standard errors or root mean squared errors). Second, these shortcut functions are generic (if appropriate), and can be applied not only to vectors, but also to other objects as well (e.g., the Coefficient of Variation can be computed for vectors, linear models, or linear mixed models; the r2()-function returns the r-squared value for 'lm', 'glm', 'merMod' or 'lme' objects). The focus of most functions lies on summary statistics or fit measures for regression models, including generalized linear models and mixed effects models. However, some of the functions also deal with other statistical measures, like Cronbach's Alpha, Cramer's V, Phi etc.

Browse man pages Browse package API and functions Browse package files

AuthorDaniel Lüdecke <d.luedecke@uke.de>
Date of publication2017-04-11 10:50:06 UTC
MaintainerDaniel Lüdecke <d.luedecke@uke.de>
LicenseGPL-3
Version0.10.0
URL https://github.com/strengejacke/sjstats
Package repositoryView on CRAN
InstallationInstall the latest version of this package by entering the following in R:
install.packages("sjstats")

Man pages

boot_ci: Standard error and confidence intervals for bootstrapped...
bootstrap: Generate nonparametric bootstrap replications
check_assumptions: Check model assumptions
chisq_gof: Chi-square goodness-of-fit-test
cod: Tjur's Coefficient of Discrimination
converge_ok: Convergence test for mixed effects models
cv: Coefficient of Variation
cv_error: Test and training error from model cross-validation
deff: Design effects for two-level mixed models
efc: Sample dataset from the EUROFAMCARE project
eta_sq: Eta-squared of fitted anova
get_model_pval: Get p-values from regression model objects
hoslem_gof: Hosmer-Lemeshow Goodness-of-fit-test
icc: Intraclass-Correlation Coefficient
inequ_trend: Compute trends in status inequalities
levene_test: Levene-Test for One-Way-Anova
mean_n: Row means with min amount of valid values
mn: Sum, mean and median for vectors
mwu: Mann-Whitney-U-Test
nhanes_sample: Sample dataset from the National Health and Nutrition...
odds_to_rr: Get relative risks estimates from logistic regressions or...
overdisp: Check overdispersion of GL(M)M's
pred_accuracy: Accuracy of predictions from model fit
pred_vars: Get predictor and response variables from models
prop: Proportions of values in a vector
r2: Compute r-squared of (generalized) linear (mixed) models
reliab_test: Check internal consistency of a test or questionnaire
re_var: Random effect variances
rmse: Compute model quality
robust: Robust standard errors for regression models
se: Standard Error for variables or coefficients
se_ybar: Standard error of sample mean for mixed models
sjstats-package: Collection of Convenient Functions for Common Statistical...
smpsize_lmm: Sample size for linear mixed models
std_beta: Standardized beta coefficients and CI of linear and mixed...
svyglm.nb: Survey-weighted negative binomial generalised linear model
table_values: Expected and relative table values
var_pop: Calculate population variance and standard deviation
weight: Weight a variable
wtd_sd: Weighted statistics for variables
xtab_statistics: Measures of association for contingency tables

Functions

as.data.frame.sj_resample Source code
as.integer.sj_resample Source code
autocorrelation Man page Source code
boot_ci Man page Source code
boot_p Man page Source code
boot_se Man page Source code
bootstr_icc_se Source code
bootstrap Man page Source code
check_assumptions Man page Source code
chisq_gof Man page Source code
cod Man page Source code
converge_ok Man page Source code
cramer Man page Source code
cronb Man page Source code
cv Man page Source code
cv_compare Man page Source code
cv_error Man page Source code
cv_helper Source code
deff Man page Source code
dot_names Source code
efc Man page
eta_sq Man page Source code
family.svyglm.nb Source code
formula.svyglm.nb Source code
get_boot_data Source code
get_glm_family Source code
get_grouped_data Source code
get_model_pval Man page Source code
get_multiple_proportion Source code
get_proportion Source code
get_re_var Man page Source code
heteroskedastic Man page Source code
hoslem_gof Man page Source code
icc Man page Source code
icc.lme4 Source code
inequ_trend Man page Source code
is_merMod Source code
levene_test Man page Source code
lm_pval_fstat Source code
lmer_var Source code
md Man page Source code
mean_n Man page Source code
merMod_p Source code
mic Man page Source code
mn Man page Source code
model.frame.gee Source code
model.frame.gls Source code
model.frame.svyglm.nb Source code
model.matrix.gls Source code
mse Man page Source code
multicollin Man page Source code
mwu Man page Source code
nhanes_sample Man page
normality Man page Source code
odds_to_rr Man page Source code
or_to_rr Man page Source code
outliers Man page Source code
overdisp Man page Source code
overdisp.default Source code
overdisp.lme4 Source code
phi Man page Source code
plot.sj_inequ_trend Source code
pred_accuracy Man page Source code
pred_vars Man page Source code
predict.svyglm.nb Source code
print.icc.lme4 Source code
print.se.icc.lme4 Source code
print.sj_mwu Source code
print.sj_resample Source code
print.sj_splithalf Source code
print.sj_xtab_stat Source code
print.sjstats_outliers Source code
print.sjstats_r2 Source code
print.sjstats_zcf Source code
print.svyglm.nb Source code
prop Man page Source code
proportions Source code
props Man page Source code
pseudo_ralt Source code
r2 Man page Source code
re_var Man page Source code
reliab_test Man page Source code
resample Source code
resp_val Man page Source code
resp_var Man page Source code
rmse Man page Source code
robust Man page Source code
rse Man page Source code
sd_pop Man page Source code
se Man page Source code
se_ybar Man page Source code
sjs.stdmm Source code
sjstats Man page
sjstats-package Man page
sjstats_deta Source code
sjstats_dtheta Source code
sjstats_loglik Source code
sjstats_score Source code
sm Man page Source code
smpsize_lmm Man page Source code
split_half Man page Source code
std_beta Man page Source code
std_e_helper Source code
std_e_icc Source code
std_merMod Source code
svy Man page Source code
svyglm.nb Man page Source code
table_values Man page Source code
tidy_svyglm.nb Source code
transform_boot_result Source code
var_pop Man page Source code
weight Man page Source code
weight2 Man page Source code
wtd_sd Man page Source code
wtd_se Man page Source code
xtab_statistics Man page Source code
zero_count Man page Source code

Files

inst
inst/CITATION
NAMESPACE
NEWS
NEWS.md
data
data/efc.RData
data/nhanes_sample.RData
R
R/odds_to_rr.R
R/mwu.R
R/S3-methods.R
R/sjStatistics.R
R/converge_ok.R
R/phi.R
R/bootstrap.R
R/prop.R
R/predictive_accuracy.R
R/cv_error.R
R/cv.R
R/svyglmnb.R
R/samplesize_lme.R
R/se.R
R/rmse.R
R/std_b.R
R/pseudo_r2.R
R/pred_vars.R
R/merMod_p.R
R/sum.R
R/overdisp.R
R/check_model_assumptions.R
R/nhanes_sample.R
R/internal_consistency.R
R/icc.R
R/weight.R
R/eta_sq.R
R/xtab_statistics.R
R/var_pop.R
R/helpfunctions.R
R/mean_n.R
R/boot_ci.R
R/efc.R
R/inequ_trends.R
R/gof.R
R/robust.R
README.md
MD5
build
build/partial.rdb
DESCRIPTION
man
man/prop.Rd
man/pred_accuracy.Rd
man/inequ_trend.Rd
man/bootstrap.Rd
man/chisq_gof.Rd
man/cv.Rd
man/rmse.Rd
man/weight.Rd
man/cv_error.Rd
man/get_model_pval.Rd
man/eta_sq.Rd
man/re_var.Rd
man/std_beta.Rd
man/deff.Rd
man/svyglm.nb.Rd
man/mean_n.Rd
man/table_values.Rd
man/mwu.Rd
man/icc.Rd
man/var_pop.Rd
man/odds_to_rr.Rd
man/pred_vars.Rd
man/boot_ci.Rd
man/robust.Rd
man/sjstats-package.Rd
man/xtab_statistics.Rd
man/levene_test.Rd
man/se.Rd
man/hoslem_gof.Rd
man/efc.Rd
man/check_assumptions.Rd
man/reliab_test.Rd
man/overdisp.Rd
man/mn.Rd
man/converge_ok.Rd
man/se_ybar.Rd
man/r2.Rd
man/smpsize_lmm.Rd
man/cod.Rd
man/nhanes_sample.Rd
man/wtd_sd.Rd
sjstats documentation built on May 19, 2017, 8 a.m.