View source: R/wilcoxon_test.R
wilcoxon_test | R Documentation |
This function performs Wilcoxon rank sum tests for one sample
or for two paired (dependent) samples. For unpaired (independent)
samples, please use the mann_whitney_test()
function.
A Wilcoxon rank sum test is a non-parametric test for the null hypothesis
that two samples have identical continuous distributions. The implementation
in wilcoxon_test()
is only used for paired, i.e. dependent samples. For
independent (unpaired) samples, use mann_whitney_test()
.
wilcoxon_test()
can be used for ordinal scales or when the continuous
variables are not normally distributed. For large samples, or approximately
normally distributed variables, the t_test()
function can be used (with
paired = TRUE
).
wilcoxon_test(
data,
select = NULL,
by = NULL,
weights = NULL,
mu = 0,
alternative = "two.sided",
...
)
data |
A data frame. |
select |
Name(s) of the continuous variable(s) (as character vector)
to be used as samples for the test.
|
by |
Name of the variable indicating the groups. Required if |
weights |
Name of an (optional) weighting variable to be used for the test. |
mu |
The hypothesized difference in means (for |
alternative |
A character string specifying the alternative hypothesis,
must be one of |
... |
Additional arguments passed to |
A data frame with test results. The function returns p and Z-values as well as effect size r and group-rank-means.
The following table provides an overview of which test to use for different types of data. The choice of test depends on the scale of the outcome variable and the number of samples to compare.
Samples | Scale of Outcome | Significance Test |
1 | binary / nominal | chi_squared_test() |
1 | continuous, not normal | wilcoxon_test() |
1 | continuous, normal | t_test() |
2, independent | binary / nominal | chi_squared_test() |
2, independent | continuous, not normal | mann_whitney_test() |
2, independent | continuous, normal | t_test() |
2, dependent | binary (only 2x2) | chi_squared_test(paired=TRUE) |
2, dependent | continuous, not normal | wilcoxon_test() |
2, dependent | continuous, normal | t_test(paired=TRUE) |
>2, independent | continuous, not normal | kruskal_wallis_test() |
>2, independent | continuous, normal | datawizard::means_by_group() |
>2, dependent | continuous, not normal | not yet implemented (1) |
>2, dependent | continuous, normal | not yet implemented (2) |
(1) More than two dependent samples are considered as repeated measurements.
For ordinal or not-normally distributed outcomes, these samples are
usually tested using a friedman.test()
, which requires the samples
in one variable, the groups to compare in another variable, and a third
variable indicating the repeated measurements (subject IDs).
(2) More than two dependent samples are considered as repeated measurements. For normally distributed outcomes, these samples are usually tested using a ANOVA for repeated measurements. A more sophisticated approach would be using a linear mixed model.
Bender, R., Lange, S., Ziegler, A. Wichtige Signifikanztests. Dtsch Med Wochenschr 2007; 132: e24–e25
du Prel, J.B., Röhrig, B., Hommel, G., Blettner, M. Auswahl statistischer Testverfahren. Dtsch Arztebl Int 2010; 107(19): 343–8
t_test()
for parametric t-tests of dependent and independent samples.
mann_whitney_test()
for non-parametric tests of unpaired (independent)
samples.
wilcoxon_test()
for Wilcoxon rank sum tests for non-parametric tests
of paired (dependent) samples.
kruskal_wallis_test()
for non-parametric tests with more than two
independent samples.
chi_squared_test()
for chi-squared tests (two categorical variables,
dependent and independent).
data(mtcars)
# one-sample test
wilcoxon_test(mtcars, "mpg")
# base R equivalent, we set exact = FALSE to avoid a warning
wilcox.test(mtcars$mpg ~ 1, exact = FALSE)
# paired test
wilcoxon_test(mtcars, c("mpg", "hp"))
# base R equivalent, we set exact = FALSE to avoid a warning
wilcox.test(mtcars$mpg, mtcars$hp, paired = TRUE, exact = FALSE)
# when `by` is specified, each group must be of same length
data(iris)
d <- iris[iris$Species != "setosa", ]
wilcoxon_test(d, "Sepal.Width", by = "Species")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.