Since the publication of the slendr paper, new versions of SLiM and slendr have been released. Specifically, the results in the paper are based on SLiM version 4.0.1 and slendr version 0.5. Whenever a new version of SLiM is released, there's always a chance that some aspect of randomness in a simulation changes slightly, which affects the results even though the random seed is kept at the same value. As such, the figures in this paper (specifically the figure for Example 4 in our paper) will look slightly different. However, the results are still relevant and applicable, its just the presentation which has changed.
env_present <- slendr:::is_slendr_env_present() eval_chunk <- (Sys.which("slim") != "" || Sys.which("slim.exe") != "" ) && env_present knitr::opts_chunk$set( collapse = TRUE, comment = "#>", dpi = 60, eval = eval_chunk ) record_snapshot <- FALSE # only save PDFs on a local machine # reporting knitr chunk run times based on: # https://bookdown.org/yihui/rmarkdown-cookbook/time-chunk.html#time-chunk all_times <- list() knitr::knit_hooks$set(time_it = local({ now <- NULL function(before, options) { if (before) { now <<- Sys.time() } else { res <- difftime(Sys.time(), now) all_times[[options$label]] <<- res } } }))
# workaround for GitHub actions getting "Killed" due to out of memory issues # -- when running unit tests on GitHub, smaller amount of sequence will be # simulated if (Sys.getenv("RUNNER_OS") != "") { scaling <- 10 # use 10X less sequence on GitHub actions } else { scaling <- 1 # but simulate normal amount of data otherwise } library(slendr) library(dplyr) library(ggplot2) library(purrr) library(tidyr) library(cowplot) library(forcats) init_env() SEED <- 42 set.seed(SEED)
# placeholder "figure" where a code chunk will be pasted p_code <- ggplot() + geom_text(aes(x = 1, y = 1), label = "code will be here") + theme_void()
o <- population("o", time = 1, N = 100) c <- population("c", time = 2500, N = 100, parent = o) a <- population("a", time = 2800, N = 100, parent = c) b <- population("b", time = 3700, N = 100, parent = a) x1 <- population("x1", time = 4000, N = 15000, parent = c) x2 <- population("x2", time = 4300, N = 15000, parent = x1) gf <- gene_flow(from = b, to = x1, start = 5400, end = 5800, 0.1) model <- compile_model( populations = list(o, a, b, c, x1, x2), gene_flow = gf, generation_time = 1, simulation_length = 6000 ) plot_model(model, sizes = FALSE, proportions = TRUE) # panel B ts <- msprime(model, sequence_length = 100e6 / scaling, recombination_rate = 1e-8, random_seed = SEED) %>% ts_mutate(mutation_rate = 1e-8, random_seed = SEED) samples <- ts_samples(ts) %>% group_by(pop) %>% sample_n(100) # panel C divergence <- ts_divergence(ts, split(samples$name, samples$pop)) # panel D f4ratio <- ts_f4ratio( ts, X = filter(samples, pop %in% c("x1", "x2"))$name, A = "a_1", B = "b_1", C = "c_1", O = "o_1" )
system(sprintf("cp -r %s %s", model$path, "/Users/mp/Documents/postdoc/slendr-paper/preprint_models_v0.5/ex1")) ts_save(ts, "/Users/mp/Documents/postdoc/slendr-paper/preprint_models_v0.5/ex1.trees")
divergence <- divergence %>% mutate(pair = paste(x, "-", y)) f4ratio <- f4ratio %>% mutate(population = gsub("^(.*)_.*$", "\\1", X), alpha = alpha * 100) p_ex1_divergence <- divergence %>% ggplot(aes(fct_reorder(pair, divergence), divergence)) + geom_point(size = 2.5) + xlab("population pair") + ylab("pairwise divergence") + theme_minimal() + theme(legend.position = "bottom", legend.text = element_text(size = 10), axis.text.x = element_text(hjust = 1, angle = 45, size = 8), axis.title.x = element_blank()) p_ex1_f4ratio <- f4ratio %>% ggplot(aes(population, alpha)) + geom_hline(yintercept = 0, linetype = 2) + geom_jitter(alpha = 0.5) + geom_boxplot(outlier.shape = NA, alpha = 0.7) + ylab(base::expression(italic("f")[4]~"-ratio ancestry proportion [%]")) + theme_minimal() + coord_cartesian(ylim = c(0, 20)) + theme(legend.position = "none", axis.text.x = element_text(size = 11), axis.title.x = element_blank(), panel.grid.major.x = element_blank())#; p_ex3_f4ratio # let's avoid ggpubr as another dependency: # https://github.com/kassambara/ggpubr/blob/master/R/as_ggplot.R#L27 p_ex1_legend <- ggdraw() + draw_grob(grid::grobTree(get_legend(p_ex1_divergence))) p_ex1_model <- plot_model(model, sizes = FALSE, proportions = TRUE) p_ex1 <- plot_grid( p_code, plot_grid( p_ex1_model, plot_grid( p_ex1_divergence + theme(legend.position = "none"), p_ex1_f4ratio, ncol = 2, rel_widths = c(1, 0.8), labels = c("C", "D") ), p_ex1_legend, nrow = 3, rel_heights = c(1, 1, 0.1), labels = "B" ), nrow = 1, labels = c("A", "") ) p_ex1
ggsave("/Users/mp/Documents/postdoc/slendr-paper/preprint_models_v0.5/ex1.pdf", p_ex1, width = 9, height = 6, units = "in")
map <- world(xrange = c(0, 10), yrange = c(0, 10), landscape = region(center = c(5, 5), radius = 5)) p1 <- population("pop1", time = 1, N = 2000, map = map, competition = 0) p2 <- population("pop2", time = 1, N = 2000, map = map, competition = 9) p3 <- population("pop3", time = 1, N = 2000, map = map, competition = 6) p4 <- population("pop4", time = 1, N = 2000, map = map, competition = 5) p5 <- population("pop5", time = 1, N = 2000, map = map, competition = 4) p6 <- population("pop6", time = 1, N = 2000, map = map, competition = 3) p7 <- population("pop7", time = 1, N = 2000, map = map, competition = 2) p8 <- population("pop8", time = 1, N = 2000, map = map, competition = 1) model <- compile_model( populations = list(p1, p2, p3, p4, p5, p6, p7, p8), generation_time = 1, simulation_length = 5000, resolution = 0.1, mating = 0.1, dispersal = 0.05 ) ts <- slim(model, sequence_length = 10e6 / scaling, recombination_rate = 1e-8, random_seed = SEED) %>% ts_simplify() %>% ts_mutate(mutation_rate = 1e-7, random_seed = SEED) locations <- ts_nodes(ts) %>% filter(time == max(time)) heterozygosity <- ts_samples(ts) %>% group_by(pop) %>% sample_n(100) %>% mutate(pi = ts_diversity(ts, name)$diversity)
system(sprintf("cp -r %s %s", model$path, "/Users/mp/Documents/postdoc/slendr-paper/preprint_models_v0.5/ex2")) ts_save(ts, "/Users/mp/Documents/postdoc/slendr-paper/preprint_models_v0.5/ex2.trees")
p_ex2_clustering <- ggplot() + geom_sf(data = map) + geom_sf(data = locations, aes(color = pop), size = 0.05, alpha = 0.25) + facet_grid(. ~ pop, switch = "x") + xlab("spatial distributions emerged in the simulation") + theme( strip.background = element_blank(), strip.text = element_text(size = 11), panel.grid = element_blank(), axis.ticks = element_blank(), axis.text = element_blank(), panel.background = element_blank() ) + guides(color = "none") p_ex2_diversity <- ggplot(heterozygosity, aes(pop, pi, color = pop)) + geom_violin(color = "black") + geom_jitter(alpha = 0.5) + labs(y = "individual heterozygosity") + guides(color = "none") + theme_minimal() + theme(axis.title.x = element_blank(), axis.text.x = element_blank(), panel.grid.major.x = element_blank(), plot.margin = margin(t = 0.2, r = 0.2, b = -0.1, l = 0.2, "cm")) p_ex2 <- plot_grid( p_code, plot_grid( p_ex2_diversity, p_ex2_clustering + theme(plot.margin = margin(t = 0, r = 0.4, b = 0, l = 1.8, "cm")), nrow = 2, rel_heights = c(1, 0.5), labels = c("B", "C") ), nrow = 2, labels = c("A", ""), rel_heights = c(1.5, 1) ) p_ex2
ggsave("/Users/mp/Documents/postdoc/slendr-paper/preprint_models_v0.5/ex2.pdf", p_ex2, width = 6, height = 9, units = "in")
map <- world(xrange = c(-13, 70), yrange = c(18, 65), crs = 3035) R1 <- region( "EHG range", map, polygon = list(c(26, 55), c(38, 53), c(48, 53), c(60, 53), c(60, 60), c(48, 63), c(38, 63), c(26, 60)) ) R2 <- region( "Europe", map, polygon = list( c(-8, 35), c(-5, 36), c(10, 38), c(20, 35), c(25, 35), c(33, 45), c(20, 58), c(-5, 60), c(-15, 50) ) ) R3 <- region( "Anatolia", map, polygon = list(c(28, 35), c(40, 35), c(42, 40), c(30, 43), c(27, 40), c(25, 38)) ) R4 <- join(R2, R3) R5 <- region( "YAM range", map, polygon = list(c(26, 50), c(38, 49), c(48, 50), c(48, 56), c(38, 59), c(26, 56)) ) ooa_trajectory <- list(c(40, 30), c(50, 30), c(60, 40), c(45, 55))
map <- world(xrange = c(-13, 70), yrange = c(18, 65), crs = 3035) ooa <- population( "OOA", time = 50000, N = 500, remove = 23000, map = map, center = c(33, 30), radius = 400e3 ) %>% move(trajectory = ooa_trajectory, start = 50000, end = 40000, snapshots = 30) ehg <- population( "EHG", time = 28000, N = 1000, parent = ooa, remove = 6000, map = map, polygon = R1 ) eur <- population( "EUR", time = 30000, N = 2000, parent = ooa, map = map, polygon = R2 ) %>% resize(N = 10000, time = 5000, end = 0, how = "exponential") ana <- population( "ANA", time = 25000, N = 4000, parent = ooa, remove = 3000, map = map, polygon = R3 ) %>% expand_range(by = 3e6, start = 10000, end = 7000, polygon = R4, snapshots = 15) yam <- population( "YAM", time = 7000, N = 600, parent = ehg, remove = 2500, map = map, polygon = R5 ) %>% move(trajectory = list(c(15, 50)), start = 5000, end = 3000, snapshots = 10) gf <- list( gene_flow(ana, to = yam, rate = 0.5, start = 6500, end = 5000), gene_flow(ana, to = eur, rate = 0.6, start = 8000, end = 6000), gene_flow(yam, to = eur, rate = 0.7, start = 3500, end = 3000) ) model <- compile_model( populations = list(ooa, ehg, eur, ana, yam), gene_flow = gf, generation_time = 30, resolution = 10e3, competition = 150e3, mating = 120e3, dispersal = 90e3 ) samples <- schedule_sampling( model, times = seq(0, 50000, by = 1000), list(ehg, 20), list(ana, 20), list(yam, 20), list(eur, 20) ) plot_model(model, sizes = FALSE) plot_map(model) ts <- slim( model, burnin = 200000, samples = samples, random_seed = SEED, sequence_length = 200000, recombination_rate = 1e-8 )
system(sprintf("cp -r %s %s", model$path, "/Users/mp/Documents/postdoc/slendr-paper/preprint_models_v0.5/ex3")) ts_save(ts, "/Users/mp/Documents/postdoc/slendr-paper/preprint_models_v0.5/ex3.trees")
devtools::load_all() init_env() model <- read_model("/Users/mp/Documents/postdoc/slendr-paper/preprint_models_v0.5/ex3") ts <- ts_load("/Users/mp/Documents/postdoc/slendr-paper/preprint_models_v0.5/ex3.trees", model = model) library(dplyr) library(ggplot2) library(purrr) library(tidyr) library(cowplot) library(forcats) init_env() SEED <- 42 set.seed(SEED) # placeholder "figure" where a code chunk will be pasted p_code <- ggplot() + geom_text(aes(x = 1, y = 1), label = "code will be here") + theme_void() map <- world(xrange = c(-13, 70), yrange = c(18, 65), crs = 3035) e <- "EUR_578"
p_map <- plot_map(model) + theme(legend.position = "bottom") + guides(alpha = "none") p_ex3 <- plot_grid( p_code, plot_grid( plot_model(model, sizes = FALSE), p_map, labels = c("B", "C"), nrow = 2, rel_heights = c(1, 1) ), ncol = 2, labels = c("A", ""), rel_widths = c(1, 1.2) ) p_ex3
ggsave("/Users/mp/Documents/postdoc/slendr-paper/preprint_models_v0.5/ex3.pdf", p_ex3, width = 9, height = 6, units = "in")
# eurs <- ts_samples(ts) %>% filter(pop == "EUR") %>% pull(name) # # eurs <- c("EUR_542", "EUR_549", "EUR_567", "EUR_581", "EUR_582") # eurs <- e <- c("EUR_578") # ############# # ###### FOUND THE IND_578 (see anc.pdf) # ###### actually ,keep the anc.pdf in the archive # # finding a EUR individual with illustratively rich spatial ancestry # pdf("~/Desktop/anc.pdf") # for (e in eurs) { # ancestors <- ts_ancestors(ts, e, verbose=T) # if (length(unique(as.character(ancestors$parent_pop))) < 5) next # chrom_names <- stats::setNames( # c(paste(e, "(chromosome 1, node 10)"), paste(e, "(chromosome 2, node 11)")), # unique(ancestors$node_id) # ) # p_ancestors <- ggplot() + # geom_sf(data = map) + # geom_sf(data = ancestors, size = 0.5, alpha = 0.2) + # geom_sf(data = sf::st_set_geometry(ancestors, "parent_location"), # aes(shape = parent_pop, color = parent_pop)) + # geom_sf(data = filter(ts_nodes(ts), name == e), size = 3) + # coord_sf(expand = 0) + # labs(x = "longitude", y = "latitude") + # theme_bw() + # facet_grid(. ~ node_id, labeller = labeller(node_id = chrom_names)) + # theme(legend.position = "bottom"); print(p_ancestors) # } # dev.off() # # finding appropriate ancestors for plotting an illustrative tree ("YAM" ancestor) # ggplot() + # geom_sf(data = map) + # geom_sf(data = ancestors, size = 0.5, alpha = 0.2) + # geom_sf(data = sf::st_set_geometry(ancestors, "parent_location"), # aes(shape = parent_pop, color = parent_pop)) + # geom_sf(data = filter(ts_nodes(ts), name == e), size = 1) + # geom_sf_label(data = filter(ancestors, parent_pop == "YAM"), aes(label = parent_id), alpha = 0.5) + # coord_sf(expand = 0) + # labs(x = "longitude", y = "latitude") + # theme_bw() + # # facet_grid(. ~ node_id, labeller = labeller(node_id = chrom_names)) + # theme(legend.position = "bottom") # # finding appropriate ancestors for plotting an illustrative tree ("ANA" ancestor) # ggplot() + # geom_sf(data = map) + # geom_sf(data = ancestors, size = 0.5, alpha = 0.2) + # geom_sf(data = sf::st_set_geometry(ancestors, "parent_location"), # aes(shape = parent_pop, color = parent_pop)) + # geom_sf(data = filter(ts_nodes(ts), name == e), size = 1) + # geom_sf_label(data = filter(ancestors, parent_pop == "ANA"), aes(label = parent_id), alpha = 0.5) + # coord_sf(expand = 0, xlim = c(20, 40), ylim = c(35, 45), crs = 4326) + # labs(x = "longitude", y = "latitude") + # theme_bw() + # # facet_grid(. ~ node_id, labeller = labeller(node_id = chrom_names)) + # theme(legend.position = "bottom") # # finding appropriate leaves for plotting an illustrative tree ("EHG" ancestor) # ggplot() + # geom_sf(data = map) + # geom_sf(data = ancestors, size = 0.5, alpha = 0.2) + # geom_sf(data = sf::st_set_geometry(ancestors, "parent_location"), # aes(shape = parent_pop, color = parent_pop)) + # geom_sf(data = filter(ts_nodes(ts), name == e), size = 1) + # geom_sf_label(data = filter(ancestors, parent_pop == "EHG"), aes(label = parent_id), alpha = 0.5) + # coord_sf(expand = 0) + # labs(x = "longitude", y = "latitude") + # theme_bw() + # # facet_grid(. ~ node_id, labeller = labeller(node_id = chrom_names)) + # theme(legend.position = "bottom") # ts_yam_anc <- ts_descendants(ts, x = 39806) %>% filter(!is.na(name)) %>% as.data.frame() %>% arrange(parent_time) # ts_ana_anc <- ts_descendants(ts, x = 41734) %>% filter(!is.na(name)) %>% as.data.frame() %>% filter(grepl("ANA_", name)) # ts_ehg_anc <- ts_descendants(ts, x = 42843) %>% filter(!is.na(name)) %>% as.data.frame( %>% arrange(parent_time)) # names <- c("EUR_578", ts_yam_anc$name, ts_ana_anc$name, ts_ehg_anc$name)
ts_small <- ts_simplify(ts, simplify_to = c("EUR_578", "YAM_75", "ANA_163", "EHG_208")) # tskit uses zero-based indexing tree <- ts_phylo(ts_small, i = 15 / scaling) nodes <- ts_nodes(tree) edges <- ts_edges(tree) ancestors <- ts_ancestors(ts, "EUR_578")
ts_save(ts, "/Users/mp/Documents/postdoc/slendr-paper/preprint_models_v0.5/ex3_small.trees")
library(ggtree) # prepare annotation table for ggtree linking R phylo node ID (not tskit integer # ID!) of each node with its population name df <- as_tibble(nodes) %>% select(node = phylo_id, pop) abs_comma <- function (x, ...) { format(abs(x) / 1000, ..., scientific = FALSE, trim = TRUE) } highlight_nodes <- as_tibble(nodes) %>% dplyr::filter(name == "EUR_578") %>% .$phylo_id p_tree <- ggtree(tree, aes(color = pop, fill = pop)) %<+% df + geom_tiplab(align = TRUE, geom = "label", offset = 2000, color = "white", fontface = "bold", size = 2.7) + geom_tiplab(align = TRUE, geom = NULL, linetype = "dotted", size = 0) + geom_point2(aes(subset = (node %in% highlight_nodes)), color = "black", size = 2.7) + geom_label2(aes(label = label, subset = !isTip), color = "black", size = 2.7) + theme_tree2() + theme(legend.position = "none") + xlab("time before present [thousand years ago]") + scale_x_continuous(limits = c(-80000, 31000), labels = abs_comma, breaks = -c(100, 80, 60, 40, 20, 0) * 1000) p_tree <- revts(p_tree) # nodes$label <- ifelse(is.na(nodes$name), nodes$node_id, nodes$name) nodes$label <- sapply(1:nrow(nodes), function(i) { if (is.na(nodes[i, ]$name)) nodes[i, ]$node_id else { ind <- nodes[i, ]$name paste(nodes[!is.na(nodes$name) & nodes$name == ind, ]$node_id, collapse = "&") } }) p_map <- ggplot() + geom_sf(data = map) + geom_sf(data = edges, aes(color = parent_pop), size = 0.5) + geom_sf_label(data = nodes[!nodes$sampled, ], aes(label = node_id, fill = pop), size = 3) + geom_sf_label(data = nodes[nodes$sampled, ], aes(label = label, fill = pop), size = 3, fontface = "bold", color = "white") + coord_sf(xlim = c(3177066.1, 7188656.9), ylim = c(757021.7, 5202983.3), expand = 0) + guides(fill = guide_legend("", override.aes = aes(label = ""))) + guides(color = "none") + scale_colour_discrete(drop = FALSE) + scale_fill_discrete(drop = FALSE) + theme_bw() + theme(legend.position = "bottom", axis.title.x = element_blank(), axis.title.y = element_blank()) chrom_names <- stats::setNames( c("EUR_578 (node 6)", "EUR_578 (node 7)"), unique(ancestors$node_id) ) p_ancestors <- ggplot() + geom_sf(data = map) + geom_sf(data = ancestors, size = 0.5, alpha = 0.25) + geom_sf(data = sf::st_set_geometry(ancestors, "parent_location"), aes(shape = parent_pop, color = parent_pop)) + geom_sf(data = filter(ts_nodes(ts), name == "EUR_578"), size = 3) + coord_sf(expand = 0) + labs(x = "longitude", y = "latitude") + theme_bw() + facet_grid(. ~ node_id, labeller = labeller(node_id = chrom_names)) + theme(legend.position = "none") p_legend <- ggdraw() + draw_grob(grid::grobTree(get_legend(p_map))) p_ex4 <- plot_grid( p_code, plot_grid(p_tree + theme(legend.position = "none"), p_map + theme(legend.position = "none"), labels = c("B", "C"), rel_widths = c(1, 0.9)), p_ancestors, p_legend, labels = c("A", "", "D", ""), nrow = 4, rel_heights = c(0.5, 1, 1, 0.1) ) p_ex4
ggsave("/Users/mp/Documents/postdoc/slendr-paper/preprint_models_v0.5/ex4.pdf", p_ex4, width = 8.5, height = 9, units = "in")
As explained on top of this page, the random number generation in the current SLiM is slightly different from the version 4.0.1 which was available at the time of writing of our paper. This is why the figure above looks a little different as well (different random generation implies different movement of individuals, and different individuals being sampled). For the record, here's the original figure used in our paper which was also originally part of this vignette:
{width="60%"}
The following times were measured on a 16'' MacBook Pro with the Apple M1 Pro chip (2021 model), 32 GB RAM, running macOS Ventura Version 13.1.
data.frame( example = as.vector(names(all_times)), time = as.numeric(all_times), units = sapply(all_times, units), row.names = NULL ) %>% knitr::kable()
In the table above, ex1
, ex2
, ex3
, and ex4
correspond to runtimes of code shown in one of the four example figures in the slendr paper.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.