map.csa.mca: Map the coordinates of the individuals in a CSA and its MCA

Description Usage Arguments See Also Examples

View source: R/functions_array.r

Description

Map the coordinates of the individuals in a CSA and its MCA

Usage

1
2
3
4
5
6
7
map.csa.mca(
  csa.object,
  mca.dim = 1,
  csa.dim = 1,
  smooth = TRUE,
  method = "auto"
)

Arguments

csa.object

a result object created by the soc.csa function

mca.dim

the dimension from the original MCA

csa.dim

the dimension from the CSA

smooth

if TRUE a line is added to the plot

method

the method used by ggplot to set the line see geom_smooth

See Also

soc.csa, map.csa.all, linkmap.csa.mca.array

Examples

1
2
3
example(soc.csa)
csa.res  <- soc.csa(result, class.age)
map.csa.mca(csa.res, mca.dim = 2, csa.dim = 1)

Example output

Loading required package: ggplot2

soc.cs> example(soc.ca)

soc.ca> data(taste)

soc.ca> # Create a data frame of factors containing all the active variables 
soc.ca> taste          <- taste[which(taste$Isup == 'Active'), ]

soc.ca> attach(taste)

soc.ca> active         <- data.frame(TV, Film, Art, Eat)

soc.ca> sup            <- data.frame(Gender, Age, Income)

soc.ca> detach(taste)

soc.ca> # Runs the analysis
soc.ca> result         <- soc.mca(active, sup)

soc.cs> class.age    <- which(taste$Age == '55-64')

soc.cs> res.csa      <- soc.csa(result, class.age)

soc.cs> res.csa
                     Class Specific Multiple Correspondence Analysis:                      
 
                    Statistics                                   Scree plot               
	Active dimensions:                            10  |  1.     44.7%   **********************
	Dimensions explaining 80% of inertia:          3  |  2.     24.0%   ************
	Active modalities:                            29  |  3.     14.4%   *******
	Supplementary modalities:                      0  |  4.      6.8%   ****
	Individuals:                                 183  |  5.      4.9%   **
	Share of passive mass:                         0  |  6.      2.3%   *
	Number of passive modalities:                  0  |  7.      1.7%   *

                    The 4 active variables: [No. modalities - share of variance]                    

             TV [8 - 28%]            Film [8 - 28%]             Art [7 - 24%] 
            Eat [6 - 20%]
`geom_smooth()` using method = 'loess' and formula 'y ~ x'

soc.ca documentation built on Sept. 5, 2021, 5:21 p.m.

Related to map.csa.mca in soc.ca...