Description Usage Arguments See Also Examples
View source: R/functions_array.r
Map the coordinates of the individuals in a CSA and its MCA
1 2 3 4 5 6 7 | map.csa.mca(
csa.object,
mca.dim = 1,
csa.dim = 1,
smooth = TRUE,
method = "auto"
)
|
csa.object |
a result object created by the soc.csa function |
mca.dim |
the dimension from the original MCA |
csa.dim |
the dimension from the CSA |
smooth |
if TRUE a line is added to the plot |
method |
the method used by ggplot to set the line see geom_smooth |
soc.csa, map.csa.all, linkmap.csa.mca.array
1 2 3 | example(soc.csa)
csa.res <- soc.csa(result, class.age)
map.csa.mca(csa.res, mca.dim = 2, csa.dim = 1)
|
Loading required package: ggplot2
soc.cs> example(soc.ca)
soc.ca> data(taste)
soc.ca> # Create a data frame of factors containing all the active variables
soc.ca> taste <- taste[which(taste$Isup == 'Active'), ]
soc.ca> attach(taste)
soc.ca> active <- data.frame(TV, Film, Art, Eat)
soc.ca> sup <- data.frame(Gender, Age, Income)
soc.ca> detach(taste)
soc.ca> # Runs the analysis
soc.ca> result <- soc.mca(active, sup)
soc.cs> class.age <- which(taste$Age == '55-64')
soc.cs> res.csa <- soc.csa(result, class.age)
soc.cs> res.csa
Class Specific Multiple Correspondence Analysis:
Statistics Scree plot
Active dimensions: 10 | 1. 44.7% **********************
Dimensions explaining 80% of inertia: 3 | 2. 24.0% ************
Active modalities: 29 | 3. 14.4% *******
Supplementary modalities: 0 | 4. 6.8% ****
Individuals: 183 | 5. 4.9% **
Share of passive mass: 0 | 6. 2.3% *
Number of passive modalities: 0 | 7. 1.7% *
The 4 active variables: [No. modalities - share of variance]
TV [8 - 28%] Film [8 - 28%] Art [7 - 24%]
Eat [6 - 20%]
`geom_smooth()` using method = 'loess' and formula 'y ~ x'
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.