E.mat: Epistatic relationship matrix

View source: R/FUN_relationships.R

E.matR Documentation

Epistatic relationship matrix

Description

Calculates the realized epistatic relationship matrix of second order (additive x additive, additive x dominance, or dominance x dominance) using hadamard products with the C++ Armadillo library.

Usage

E.mat(X,nishio=TRUE,type="A#A",min.MAF=0.02)

Arguments

X

Matrix (n \times m) of unphased genotypes for n lines and m biallelic markers, coded as {-1,0,1}. Fractional (imputed) and missing values (NA) are allowed.

nishio

If TRUE Nishio ans Satoh. (2014), otherwise Su et al. (2012) (see Details in the D.mat help page).

type

An argument specifying the type of epistatic relationship matrix desired. The default is the second order epistasis (additive x additive) type="A#A". Other options are additive x dominant (type="A#D"), or dominant by dominant (type="D#D").

min.MAF

Minimum minor allele frequency. The A matrix is not sensitive to rare alleles, so by default only monomorphic markers are removed.

Details

it is computed as the Hadamard product of the epistatic relationship matrix; E=A#A, E=A#D, E=D#D.

Value

The epistatic relationship matrix is returned.

References

Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744

Endelman, J.B., and J.-L. Jannink. 2012. Shrinkage estimation of the realized relationship matrix. G3:Genes, Genomes, Genetics. 2:1405-1413. doi: 10.1534/g3.112.004259

Nishio M and Satoh M. 2014. Including Dominance Effects in the Genomic BLUP Method for Genomic Evaluation. Plos One 9(1), doi:10.1371/journal.pone.0085792

Su G, Christensen OF, Ostersen T, Henryon M, Lund MS. 2012. Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers. PLoS ONE 7(9): e45293. doi:10.1371/journal.pone.0045293

See Also

The core functions of the package mmer

Examples

####=========================================####
####random population of 200 lines with 1000 markers
####=========================================####
X <- matrix(rep(0,200*1000),200,1000)
for (i in 1:200) {
  X[i,] <- sample(c(-1,0,0,1), size=1000, replace=TRUE)
}

E <- E.mat(X, type="A#A") 
# if heterozygote markers are present can be used "A#D" or "D#D"

sommer documentation built on Sept. 11, 2024, 6:22 p.m.