Mestimator: Function 'Mestimator'

Description Usage Arguments Details Value References See Also Examples

Description

Function to compute the pairwise M-estimator for the parameters of the Smith model or the Brown-Resnick process.

Usage

1
2
3
Mestimator(x, locations, pairIndices, k, model, Tol = 1e-05,
  startingValue = NULL, Omega = diag(nrow(pairIndices)), iterate = TRUE,
  covMat = TRUE)

Arguments

x

An n x d data matrix.

locations

A d x 2 matrix containing the Cartesian coordinates of d points in the plane.

pairIndices

A q x 2 matrix containing the indices of q pairs of points from the matrix locations.

k

The threshold parameter in the definition of the empirical stable tail dependence function.

model

Choose between "smith" and "BR".

Tol

The tolerance parameter in the numerical integration procedure; defaults to 1e-05.

startingValue

Initial value of the parameters in the minimization routine. Defaults to diag(2) for the Smith model and (1, 1.5, 0.75, 0.75) for the BR process.

Omega

A q x q matrix specifying the metric with which the distance between the parametric and nonparametric estimates will be computed. The default is the identity matrix, i.e., the Euclidean metric.

iterate

A Boolean variable. If TRUE (the default), then the estimator is calculated twice, first with Omega specified by the user, and then a second time with the optimal Omega calculated at the initial estimate.

covMat

A Boolean variable. If TRUE (the default), the covariance matrix is calculated.

Details

For a detailed description of the estimation procedure, see Einmahl et al. (2014). Some tips for using this function:

Value

A list with the following components:

theta The estimator with estimated optimal weight matrix.
theta_pilot The estimator without the optimal weight matrix.
covMatrix The estimated covariance matrix for the estimator.
Omega The weight matrix with which the estimator was calculated.

References

Einmahl, J.H.J., Kiriliouk, A., Krajina, A. and Segers, J. (2014), "An M-estimator of spatial tail dependence". See http://arxiv.org/abs/1403.1975.

See Also

selectPairIndices, pairCoordinates

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
## define the locations of 4 stations
(locations <- rbind(c(1,1),c(2,1),c(1,2),c(2,2)))
## select the pairs of locations; here, we select all locations
(pairIndices <- selectPairIndices(locations, maxDistance = 2))

## We use the rmaxstab function from the package SpatialExtremes to
## simulate from the Smith and the Brown-Resnick process.

## The Smith model
set.seed(2)
x<-rmaxstab(n = 5000, coord = locations,cov.mod="gauss",cov11=1,cov22=2,cov12=0.5)
## calculate the pairwise M-estimator. This may take up to one minute or longer.
## Mestimator(x, locations, pairIndices, 100, model="smith",Tol = 5e-04)

## The Brown-Resnick process
set.seed(2)
x <- rmaxstab(n = 5000, coord = locations, cov.mod = "brown", range = 3, smooth = 1)
## We can only simulate isotropic processes with rmaxstab, so we multiply the coordinates
## of the locations with V^(-1) (beta,c). Here we choose beta = 0.25 and c = 1.5
(Vmat<-matrix(c(cos(0.25),1.5*sin(0.25),-sin(0.25),1.5*cos(0.25)),nrow=2))
(locationsAniso <- locations %*% t(solve(Vmat)))
## calculate the pairwise M-estimator. This may take up to one minute or longer.
## Mestimator(x, locationsAniso, pairIndices, 300, model="BR",Tol = 5e-04)

spatialTailDep documentation built on May 2, 2019, 4:51 a.m.