Description Details Maintainer Note Author(s) References See Also Examples
An R package for spatial point process analysis.
This package contains functions for spatial point process analysis using kernel smoothing methods. This package has been written to be compatible with the splancs package which is available on CRAN (The Comprehensive R Archive Network).
For a complete list of functions with individual help pages,
use library(help = \ "spatialkernel")
.
Pingping Zheng pingping.zheng@lancaster.ac.uk
For the convience of the user, we present here examples which show how to use some of the functions in the package.
Pingping Zheng and Peter Diggle
P. Zheng, P.A. Durr and P.J. Diggle (2004) Edge-correction for Spatial Kernel Smoothing — When Is It Necessary? Proceedings of the GisVet Conference 2004, University of Guelph, Ontario, Canada, June 2004.
Diggle, P.J., Zheng, P. and Durr, P. A. (2005) Nonparametric estimation of spatial segregation in a multivariate point process: bovine tuberculosis in Cornwall, UK. J. R. Stat. Soc. C, 54, 3, 645–658.
cvloglk
, phat
,
mcseg.test
, plotphat
,
plotmc
, pinpoly
,
risk.colors
, metre
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | ## An example of spatial segregation analysis
## source in Lansing Woods tree data within a polygon boundary
data(lansing)
data(polyb)
## select data points within polygon
ndx <- which(pinpoly(polyb, as.matrix(lansing[c("x", "y")])) > 0)
pts <- as.matrix(lansing[c("x", "y")])[ndx,]
marks <- lansing[["marks"]][ndx]
## select bandwidth
#In a real application you may want to set 'length' to a higher value.
h <- seq(0.02, 0.1, length=11)
cv <- cvloglk(pts, marks, h=h)$cv
hcv <- h[which.max(cv)]
plot(h, cv, type="l")
## estimate type-specific probabilities and do segregation tests
## by one integrated function
#
# In a real application, set 'ntest' to 99 or a larger number.
sp <- spseg(pts, marks, hcv, opt=3, ntest=5, poly=polyb)
## plot estimated type-specific probability surfaces
plotphat(sp)
## additional with pointwise significance contour lines
plotmc(sp, quan=c(0.025, 0.975))
## p-value of the Monte Carlo segregation test
cat("\np-value of the Monte Carlo segregation test", sp$pvalue)
##estimate intensity function at grid point for presentation
##with bandwidth hcv
gridxy <- as.matrix(expand.grid(x=seq(0, 1, length=41), y=seq(0, 1, length=41)))
ndx <- which(pinpoly(polyb, gridxy) > 0) ##inside point index
lam <- matrix(NA, ncol = 41, nrow = 41)
lam[ndx] <- lambdahat(pts, hcv, gpts = gridxy[ndx,], poly =
polyb)$lambda
brks <- pretty(range(lam, na.rm=TRUE), n=12)
plot(0, 0, xlim=0:1, ylim=0:1, xlab="x", ylab="y", type="n")
image(x=seq(0, 1, length=41), y=seq(0, 1, length=41),
z=lam, add=TRUE, breaks=brks, col=risk.colors(length(brks)-1))
polygon(polyb)
metre(0, 0.01, 0.05, 0.51, lab=brks, col=risk.colors(length(brks)-1), cex=1)
## An example of inhomogeneous intensity function and K function
## estimated with the same data
s <- seq(0, 0.06, length=51)
lam <- lambdahat(pts, hcv, poly=polyb)$lambda
kin <- kinhat(pts, lam, polyb, s)
plot(kin$s, kin$k-pi*(kin$s)^2, xlab="s", ylab="k-pi*s^2", type="l")
|
This is spatialkernel 0.4-23
Calculating type-specific probabilities
Monte Carlo testing
Processing No. 1 out of 5
Processing No. 2 out of 5
Processing No. 3 out of 5
Processing No. 4 out of 5
Processing No. 5 out of 5
p-value of the Monte Carlo segregation test 0.2NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.