Nothing
#' Use composite likelihood (Gaussian sv) for estimation with known covariance parameters
#'
#' @param spcov_initial A \code{spcov_initial} object
#' @param formula A formula
#' @param data Data
#' @param dist_matrix A distance matrix (Euclidean)
#' @param partitoin_list A partition matrix
#'
#' @return The known covariance parameters
#'
#' @noRd
use_glogclik_known <- function(spcov_initial, data_object, dist_matrix_list, partition_list = NULL) {
dist_vector_list <- lapply(dist_matrix_list, function(x) {
x <- as.matrix(x)
x <- x[upper.tri(x)]
})
if (any(unlist(dist_vector_list) == 0)) {
warning("Zero distances observed between at least one pair. Ignoring pairs. If using splm(), consider a different estimation method.", call. = FALSE)
}
residual_list <- lapply(data_object$obdata_list, function(d) residuals(lm(data_object$formula, data = d)))
residual_matrix_list <- lapply(residual_list, function(x) spdist(xcoord_val = x))
residual_vector_list <- lapply(residual_matrix_list, function(x) {
x <- as.matrix(x)
x <- x[upper.tri(x)]
})
residual_vector <- unlist(residual_vector_list)
if (!is.null(data_object$partition_list)) {
partition_vector_list <- lapply(data_object$partition_list, function(x) {
x <- as.matrix(x)
x <- x[upper.tri(x)]
})
dist_vector_list <- mapply(d = dist_vector_list, p = partition_vector_list, function(d, p) d * p, SIMPLIFY = FALSE)
residual_vector_list <- mapply(r = residual_vector_list, p = partition_vector_list, function(r, p) r * p, SIMPLIFY = FALSE)
}
dist_vector <- unlist(dist_vector_list)
dist_index <- dist_vector > 0
dist_vector <- dist_vector[dist_index]
residual_vector <- unlist(residual_vector_list)
residual_vector <- residual_vector[dist_index]
residual_vector2 <- residual_vector^2
# making a covariance parameter vector
spcov_params_val <- get_spcov_params(class(spcov_initial), spcov_initial$initial)
# get loss val
glogclikloss_val <- get_glogclikloss(spcov_params_val, residual_vector2, dist_vector)
# return parameter values and optim output
optim_output <- list(
method = NA, control = NA, value = glogclikloss_val,
counts = NA, convergence = NA,
message = NA, hessian = NA
)
# returning output
list(
spcov_params_val = spcov_params_val,
optim_output = optim_output, dist_matrix_list = dist_matrix_list,
is_known = list(spcov = spcov_initial$is_known)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.