View source: R/fit_msn_smooth.R
fit_msn_smooth | R Documentation |
Implement Gibbs sampling for MSN model with spatial smoothing
fit_msn_smooth( Y, coords_df, K, r = 3, nsim = 2000, burn = 1000, z_init = NULL, verbose = FALSE )
Y |
An n x g matrix of gene expression values. n is the number of cell spots and g is the number of features. |
coords_df |
An n x 2 data frame or matrix of 2d spot coordinates. |
K |
The number of mixture components to fit. |
r |
Empirical spatial smoothing |
nsim |
Number of total MCMC iterations to run. |
burn |
Number of MCMC iterations to discard as burn in. The number of saved samples is nsim - burn. |
z_init |
Optional initialized allocation vector. Randomly initialized if NULL. |
verbose |
Logical for printing cluster allocations at each iteration. |
a list of posterior samples
# parameters data(coords_df_sim) coords_df <- coords_df_sim[,1:2] z <- remap_canonical2(coords_df_sim$z) n <- nrow(coords_df) # number of observations g <- 3 # number of features K <- length(unique(coords_df_sim$z)) # number of clusters (mixture components) pi <- table(z)/length(z) # cluster membership probability # Cluster Specific Parameters Mu <- list( Mu1 = rnorm(g,-5,1), Mu2 = rnorm(g,0,1), Mu3 = rnorm(g,5,1), Mu4 = rnorm(g,-2,3) ) # cluster specific variance-covariance S <- matrix(1,nrow = g,ncol = g) # y covariance matrix diag(S) <- 1.5 Sig <- list( Sig1 = S, Sig2 = S, Sig3 = S, Sig4 = S ) Y <- matrix(0, nrow = n, ncol = g) for(i in 1:n) { Y[i,] <- mvtnorm::rmvnorm(1,mean = Mu[[z[i]]],sigma = Sig[[z[i]]]) } # fit model # in practice use more mcmc iterations fit <- fit_msn_smooth(Y = Y, coords_df = coords_df, K = K, nsim = 10, burn = 0)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.