get_scores | R Documentation |
Use posterior estimates to calculate uncertainty scores
get_scores(fit)
fit |
A model fit returned by one of the fit_*_PG model functions |
An n x (K + 1) matrix. First K columns are continuous phenotypes, and last column is uncertainty scores
# parameters data(coords_df_sim) coords_df <- coords_df_sim[,1:2] z <- remap_canonical2(coords_df_sim$z) n <- nrow(coords_df) # number of observations g <- 3 # number of features K <- length(unique(coords_df_sim$z)) # number of clusters (mixture components) pi <- table(z)/length(z) # cluster membership probability W <- matrix(0, nrow = n, ncol = 2) W[,1] <- 1 W[,2] <- sample(c(0,1),size = n, replace = TRUE, prob = c(0.5,0.5)) # Cluster Specific Parameters Mu <- list( Mu1 = rnorm(g,-5,1), Mu2 = rnorm(g,0,1), Mu3 = rnorm(g,5,1), Mu4 = rnorm(g,-2,3) ) # cluster specific variance-covariance S <- matrix(1,nrow = g,ncol = g) # y covariance matrix diag(S) <- 1.5 Sig <- list( Sig1 = S, Sig2 = S, Sig3 = S, Sig4 = S ) Y <- matrix(0, nrow = n, ncol = g) for(i in 1:n) { Y[i,] <- mvtnorm::rmvnorm(1,mean = Mu[[z[i]]],sigma = Sig[[z[i]]]) } # fit model # in practice use more mcmc iterations fit <- fit_mvn_PG_smooth(Y = Y, coords_df = coords_df, W = W, K = K, nsim = 10, burn = 0) scores_df <- get_scores(fit)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.