get_map | R Documentation |
Compute maximum aposteriori (MAP) estimate of cluster indicators
get_map(z)
z |
All cluster indicator posterior samples from a given cell spot |
MAP estimate of cluster labels. Useful applied over columns of posterior samples matrix (see example)
# parameters n <- 100 # number of observations g <- 3 # number of features K <- 3 # number of clusters (mixture components) pi <- rep(1/K,K) # cluster membership probability z <- sample(1:K, size = n, replace = TRUE, prob = pi) # cluster indicators z <- remap_canonical2(z) # Cluster Specific Parameters # cluster specific means Mu <- list( Mu1 = rnorm(g,-5,1), Mu2 = rnorm(g,0,1), Mu3 = rnorm(g,5,1) ) # cluster specific variance-covariance S <- matrix(1,nrow = g,ncol = g) # covariance matrix diag(S) <- 1.5 Sig <- list( Sig1 = S, Sig2 = S, Sig3 = S ) Y <- matrix(0, nrow = n, ncol = g) for(i in 1:n) { Y[i,] <- mvtnorm::rmvnorm(1,mean = Mu[[z[i]]],sigma = Sig[[z[i]]]) } # fit model fit1 <- fit_mvn(Y,3,100,0) # Apply get_map() to columns of Z (i.e., posterior samples from each cell spot) z_map <- apply(fit1$Z, 2, get_map)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.