KvapFun: Calculates the Isothermal Water Vapour Conductivity

Description Usage Arguments Details Author(s) References Examples

View source: R/KvapFun.R

Description

Calculates the isothermal vapour conductivity as a function of modelled volumetric air content. Different models are implemented enabling the calculation of the relative gas diffusion coefficient (Ds/Do), based on different expressions for an effective tortuosity.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
KvapFun(
  p,
  por = p[2],
  retFun = NA,
  theta = NA,
  model = "MQ61",
  Temp = 20,
  m = 3,
  pF = seq(-3, 7, length = 501),
  output = "log10",
  ...
)

Arguments

p

vector of soil hydraulic property model parameters, cf resp soil hydraulic property model for details.

por

skalar value giving the fraction of a porous' media porosity [ - ]( value between [0, 1] ), defaults to the saturated water content.

retFun

soil hydraulic property function has to be specified if models PMQ, TPM or TPEM are used, necessary to calculate the air content at h = 100 cm for the parameter eps100.

theta

vector of numerical volumetric water contents [0,1] at which the air content is to be calculated.

model

Implemented models (specify as character):

BBuckingham (1904)
PPenman (1940)
MQ60 Millington and Quirck (1960)
MQ61 Millington and Quirck (1961)
GSGrable and Siemer (1968)
LLai et al. (1976)
PMQMoldrup et al. (1997)
TPMMoldrup et al. (2004)
TPEMMoldrup et al. (2005)
Temp

Soil tempereature [ deg C ], defaults to 20.

m

PMQ model parameter, default m = 3.

pF

monotonically increasing pF values, defined as log10(| pressure head [ cm ]).

output

Defaults to log10 indicates the isothermal vapour conductivity is returned as log10(conductivity), if ouput != log10, the output will be in non-transformed values.

...

more arguments to be passed to retFun

Details

More reading on the models reference is made to suggested in \insertCiteWeber.2019spsh

Author(s)

Tobias KD Weber , tobias.weber@uni-hohenheim.de

References

\insertRef

Weber.2019spsh

Buckingham, E. (1904). Contributions to Our Knowledge of the Aeration Status of Soils, Bulletin 25, USDA Bureau of Soils, Washington, DC.

Grable, A.R.; Siemer, E.G. (1968).Effects of Bulk Density, Aggregate Size, and Soil Water Suction on Oxygen Diffusion, Redox Potentials, and Elongation of Corn Roots. Soil Sci. Soc. Am. Proc., 32, pp. 180-186. <doi:10.2136/sssaj1968.03615995003200020011x>.

Lai, S.H.; Tiedje J.M.; Erickson, E. (1976). In situ Measurement of Gas Diffusion Coefficient in Soils. Soil Sci. Soc. Am. J., 40, pp. 3-6. <doi:10.2136/sssaj1976.03615995004000010006x>.

Moldrup, P.; Olesen, T.; Rolston, D.E.; and Yamaguchi, T. (1997). Modeling Diffusion and Reaction in Soils: Vii. Predicting Gas and Ion Diffusivity in Undisturbed and Sieved Soils. Soil Science. 162 (9): pp. 632-640.

Moldrup, P.; Olesen, T.; Yoshikawa, S.; Komatsu, T.; and Rolston, D.E. (2004). Three-Porosity Model for Predicting the Gas Diffusion Coefficient in Undisturbed Soil. Soil Sci. Soc. Am. J. 68 (3).pp. 750-759. <doi:10.2136/sssaj2004.7500>.

Moldrup, P.; Olesen, T.; Yoshikawa, S.; Komatsu, T.; and Rolston, D.E. (2005). Predictive-Descriptive Models for Gas and Solute Diffusion Coefficients in Variably Saturated Porous Media Coupled to Pore-Size Distribution: II. Gas Diffusivity in Undisturbed Soil. Soil Sci., 170, pp. 854-866. <doi:10.1097/01.ss.0000196768.44165.1f>.

Millington, R.J.; Quirk, J.P. (1960). Millington, R. J., and Quirk. J.M. Transport in porous media. pp. 97-106. In: F.A. Van Beren, et al. (ed.) Trans. Int. Congr. Soil Sci., 7 th, Vol. 1, Madison, Wl. 14-24 Aug. 1960. Elsevier, Amsterdam.

Millington, R.J.; Quirk, J.P. (1961). Permeability of Porous Solids. Trans. Faraday Soc., 1961, 57, pp. 1200-1207. <doi:10.1039/TF9615701200>.

Penman, H.L. (1940). Gas and vapour movements in the soil: I. The diffusion of vapours through porous solids. J. Agric. Sci., 30: pp. 437-462. <doi:10.1017/S0021859600048164>.

Xu, X; Nieber, J.L. Gupta, S.C. (1992). Compaction Effect on the Gas Diffusion Coefficient in Soils. Soil Sci. Soc. Am. J.,56, pp. 1743-1750. <doi:10.2136/sssaj1992.03615995005600060014x>.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
# | pressure head |
pF <- seq(-3, 7, length = 201)
h <- 10^pF
# van Genuchten-Mualem model parameters
p <- c(0.08, .42, .05, 1.5, 100, .5)
# calculate soil hydraulic property values
shypL <- shypFun.01110(p, h)
# clculate the isothermal vapour conductivity
kvap <- KvapFun(p, por = p[2], retFun = NA, theta = shypL$theta, model = "MQ61", 
                Temp = 20, m = 3, pF, output = "log10")

spsh documentation built on April 14, 2020, 6:37 p.m.