MRWR | R Documentation |
The function 'MRWR' is used to predict probable influence of nodes in the network by seed nodes.
MRWR(
net_AdjMatrNorm,
Seeds,
net_data,
mut_gene,
r = 0.7,
BC_Num = length(V(net_data)$name),
cut_point = 0
)
net_AdjMatrNorm |
Row normalized network adjacency matrix. |
Seeds |
A vector containing the gene symbols of the seed nodes. |
net_data |
A list of the PPI network information,including nodes and edges . |
mut_gene |
A vector containing the gene symbols of the mutated genes in a sample. |
r |
A numeric value between 0 and 1. r is a certain probability of continuing the random walk or restarting from the restart set. Default to 0.7. |
BC_Num |
Number of background genes required to calculate seed node weight. |
cut_point |
The threshold of indicator function . |
An matrix of global weight, where the row names are genes in the network and the column names are samples.
#load the data
net_path <- system.file("extdata","ppi_network.Rdata",package = "ssMutPA")
load(net_path)
net_AdjMatr<-as.matrix(igraph::get.adjacency(ppi_network))
net_AdjMatrNorm <- t(t(net_AdjMatr)/(Matrix::colSums(net_AdjMatr, na.rm = FALSE, dims = 1)))
data(mut_status)
mut_gene<-intersect(names(mut_status[,1])[which(mut_status[,1]!=0)],igraph::V(ppi_network)$name)
seed<-intersect(names(mut_status[,1])[which(mut_status[,1]!=0)],igraph::V(ppi_network)$name)
#perform the function `MRWR`.
RWR_res<-MRWR(net_AdjMatrNorm,Seeds=seed,net_data=ppi_network,mut_gene,BC_Num = 12436)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.