Nothing
yu = list(
scoreFun = function(features, F.all, sim.mat, ...) {
measureScoreHelper(features = features,
measureFun = function(F1, F2) {
n1 = length(F1)
n2 = length(F2)
l = (n1 + n2) / 2
if (l == 0) {
return(NA_real_)
}
indices.1not2 = which(F.all %in% setdiff(F1, F2))
indices.2not1 = which(F.all %in% setdiff(F2, F1))
o12 = 0
o21 = 0
if (length(indices.1not2) > 0 && length(indices.2not1) > 0) {
sim.part = sim.mat[indices.1not2, indices.2not1, drop = FALSE]
if (length(sim.part@i) > 0) {
o12 = length(unique(sim.part@i))
o21 = length(unique(sim.part@j))
}
}
o = (o12 + o21) / 2
k = length(intersect(F1, F2))
score = k + o
return(score)
})
},
maxValueFun = function(features, ...) {
measureScoreHelper(features = features,
measureFun = function(F1, F2) (length(F1) + length(F2)) / 2
)
}
)
zucknick = list(
scoreFun = function(features, F.all, sim.mat, threshold, sim.feats, ...) {
measureScoreHelper(features = features,
measureFun = function(F1, F2) {
lu = length(union(F1, F2))
if (lu == 0) {
return(NA_real_)
}
indices.1 = which(F.all %in% F1)
indices.2 = which(F.all %in% F2)
indices.1not2 = which(F.all %in% setdiff(F1, F2))
indices.2not1 = which(F.all %in% setdiff(F2, F1))
add.sim1 = 0
if (length(indices.2not1) > 0) {
sim.part = sim.mat[indices.2not1, indices.1, drop = FALSE]
add.sim1 = sum(sim.part) / length(indices.2)
}
add.sim2 = 0
if (length(indices.1not2) > 0) {
sim.part = sim.mat[indices.1not2, indices.2, drop = FALSE]
add.sim2 = sum(sim.part) / length(indices.1)
}
res = length(intersect(F1, F2)) + add.sim1 + add.sim2
res = res / lu
return(res)
})
},
maxValueFun = function(features, ...) {
measureScoreHelper(features = features,
measureFun = function(F1, F2) {
1
}
)
}
)
sechidis = list(
scoreFun = function(features, sim.mat, F.all, ...) {
ns = lengths(features)
ns.mean = mean(ns)
p = ncol(sim.mat)
if (ns.mean == 0 || ns.mean == p) {
return(NA_real_)
}
n = length(features)
Z = matrix(0, nrow = n, ncol = p)
for (i in seq_along(features)) {
Z[i, ] = as.numeric(F.all %in% features[[i]])
}
S = cov(Z)
k.bar = mean(rowSums(Z))
k2.bar = mean(rowSums(Z)^2)
diag.element = k.bar/p * (1 - k.bar/p)
off.diag.element = (k2.bar - k.bar) / (p^2 - p) - k.bar^2 / p^2
Sigma0 = matrix(off.diag.element, nrow = p, ncol = p)
diag(Sigma0) = diag.element
num = sum(diag(sim.mat %*% S))
denom = sum(diag(sim.mat %*% Sigma0))
if (denom == 0) {
return(NA_real_)
} else {
score = 1 - num / denom
return(score)
}
},
maxValueFun = function(features, ...) {
NA_real_
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.