Nothing
## ----setup, include = FALSE-------------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.dim = c(7, 4)
)
library(statgenMPP)
op <- options(width = 90,
digits = 3)
## ----simMarkerDat, results='asis', echo=FALSE-------------------------------------------
simMrkDat <- read.delim(system.file("extdata/multipop", "AxB.txt", package = "statgenMPP"))
knitr::kable(simMrkDat[1:4, 1:5])
## ----simPhenoDat, results='asis', echo=FALSE--------------------------------------------
simPhenoDat <- read.delim(system.file("extdata/multipop", "AxBxCpheno.txt", package = "statgenMPP"))
knitr::kable(head(simPhenoDat))
## ----simIBD-----------------------------------------------------------------------------
## Specify files containing markers.
# One file for each of the two crosses.
markerFiles <- c(system.file("extdata/multipop", "AxB.txt",
package = "statgenMPP"),
system.file("extdata/multipop", "AxC.txt",
package = "statgenMPP"))
## Specify file containing map.
# Both crosses use the same map file.
mapFile <- system.file("extdata/multipop", "mapfile.txt",
package = "statgenMPP")
## Read phenotypic data
phenoDat <- read.delim(system.file("extdata/multipop", "AxBxCpheno.txt",
package = "statgenMPP"))
# Check contents.
head(phenoDat)
## Perform IBD calculations.
ABCMPP <- calcIBDMPP(crossNames = c("AxB", "AxC"),
markerFiles = markerFiles,
pheno = phenoDat,
popType = "F4DH",
mapFile = mapFile,
evalDist = 5)
## ----sumABCMPP--------------------------------------------------------------------------
## Print summary
summary(ABCMPP)
## ----plotPABCMPP------------------------------------------------------------------------
## Plot structure of the pedigree.
plot(ABCMPP, plotType = "pedigree")
## ----plotGABCMPP------------------------------------------------------------------------
## Plot genetic map.
# Highlight marker on chromosome 3 at position 40.
plot(ABCMPP, plotType = "genMap", highlight = "EXT_3_40")
## ----plotSGABCMPP, fig.height=10--------------------------------------------------------
## Plot IBD probabilities for genotype AxB0001.
plot(ABCMPP, plotType = "singleGeno", genotype = "AxB0001")
## ----ABCSQM-----------------------------------------------------------------------------
## Perform Single-QTL Mapping.
ABCSQM <- selQTLMPP(MPPobj = ABCMPP,
trait = "yield",
maxCofactors = 0)
## ----QPABCSQM---------------------------------------------------------------------------
## Plot QTL Profile for ABC SQM.
plot(ABCSQM, plotType = "QTLProfile")
## ----ABCMQM-----------------------------------------------------------------------------
## Perform Multi-QTL Mapping.
ABCMQM <- selQTLMPP(MPPobj = ABCMPP,
trait = "yield",
threshold = 3)
## ----ABCMQM_kin, eval=FALSE-------------------------------------------------------------
# ## Perform Multi-QTL Mapping.
# # Compute kinship matrices.
# ABCMQM_kin <- selQTLMPP(MPPobj = ABCMPP,
# trait = "yield",
# threshold = 3,
# computeKin = TRUE)
## ----plotQRABCMQM-----------------------------------------------------------------------
## Plot QTL Profile for ABC MQM.
plot(ABCMQM, plotType = "QTLRegion")
## ----plotQPABCMQM-----------------------------------------------------------------------
## Plot QTL Profile for ABC MQM.
plot(ABCMQM, plotType = "QTLProfile")
## ----plotPEABCMQM-----------------------------------------------------------------------
## Plot QTL Profile for ABC MQM.
plot(ABCMQM, plotType = "parEffs")
## ----plotQPEABCMQM----------------------------------------------------------------------
## Plot QTL Profile for ABC MQM.
plot(ABCMQM, plotType = "QTLProfileExt")
## ----plotCIABCMQM-----------------------------------------------------------------------
## Plot confidence intervals for parental effects for ABC MQM.
plot(ABCMQM, plotType = "parCIs")
## ----sumABCMQM--------------------------------------------------------------------------
## Print summary
summary(ABCMQM)
## ----extractABCRes----------------------------------------------------------------------
## Extract results of QTL mapping.
ABCMQMres <- ABCMQM$GWAResult$yield
head(ABCMQMres[, 1:8])
## ----extractABCQTL----------------------------------------------------------------------
## Extract QTLs and markers within QTL windows.
ABCMQMQTL <- ABCMQM$signSnp$yield
head(ABCMQMQTL[, c(2:8, 10)])
## ----maizeIBD---------------------------------------------------------------------------
## Define names of crosses.
crosses <- paste0("F353x", c("B73", "D06", "D09", "EC169", "F252", "F618",
"Mo17", "UH250", "UH304", "W117"))
head(crosses)
## Specify files containing crosses.
## Extract them in a temporary directory.
tempDir <- tempdir()
crossFiles <- unzip(system.file("extdata/maize/maize.zip", package = "statgenMPP"),
files = paste0(crosses, ".txt"), exdir = tempDir)
## Specify file containing map.
mapFile <- unzip(system.file("extdata/maize/maize.zip", package = "statgenMPP"),
files = "map.txt", exdir = tempDir)
## Read phenotypic data.
phenoFile <- unzip(system.file("extdata/maize/maize.zip", package = "statgenMPP"),
files = "EUmaizePheno.txt", exdir = tempDir)
phenoDat <- read.delim(phenoFile)
head(phenoDat[, 1:5])
## Perform IBD calculations.
maizeMPP <- calcIBDMPP(crossNames = crosses,
markerFiles = crossFiles,
pheno = phenoDat,
popType = "DH",
mapFile = mapFile,
evalDist = 5)
## ----sumMaizeIBD------------------------------------------------------------------------
## Print summary
summary(maizeMPP)
## ----plotPmaizeIBD----------------------------------------------------------------------
## Plot structure of the pedigree.
plot(maizeMPP, plotType = "pedigree")
## ----maizeSQM, eval=FALSE---------------------------------------------------------------
# ## Perform Single-QTL Mapping.
# maizeSQM <- selQTLMPP(MPPobj = maizeMPP,
# trait = "mean_DtSILK",
# maxCofactors = 0)
## ----QPmaizeSQM-------------------------------------------------------------------------
## Plot QTL Profile for maize SQM.
plot(maizeSQM, plotType = "QTLProfile")
## ----maizeMQM, eval=FALSE---------------------------------------------------------------
# ## Perform Multi-QTL Mapping.
# maizeMQM <- selQTLMPP(MPPobj = maizeMPP,
# trait = "mean_DtSILK",
# threshold = 5)
## ----plotQPEmaizeMQM--------------------------------------------------------------------
## Plot QTL Profile for maize MQM.
plot(maizeMQM, plotType = "QTLProfileExt")
## ----plotCIamizeMQM---------------------------------------------------------------------
## Plot confidence intervals for parental effects for maize MQM.
plot(maizeMQM, plotType = "parCIs")
## ----barleyIBD--------------------------------------------------------------------------
## Specify files containing RABBIT output.
## Extract in a temporary directory.
tempDir <- tempdir()
inFile <- unzip(system.file("extdata/barley/barley_magicReconstruct.zip",
package = "statgenMPP"), exdir = tempDir)
## Specify pedigree file.
pedFile <- system.file("extdata/barley/barley_pedInfo.csv",
package = "statgenMPP")
## Read phenotypic data.
data("barleyPheno")
## read RABBIT output.
barleyMPP <- readRABBITMPP(infile = inFile,
pedFile = pedFile,
pheno = barleyPheno)
## ----sumPbarleyIBD----------------------------------------------------------------------
## Summary.
summary(barleyMPP)
## ----barleyMQM, eval=FALSE--------------------------------------------------------------
# ## Perform Multi-QTL Mapping with threshold 4.
# barleyMQM <- selQTLMPP(MPPobj = barleyMPP,
# trait = "Awn_length",
# threshold = 4)
## ----QPbarleyMQM16----------------------------------------------------------------------
## Plot QTL Profile for barley MQM - chromosome 1-6.
plot(barleyMQM, plotType = "QTLProfileExt", chr = 1:6)
## ----QPbarleyMQM7-----------------------------------------------------------------------
## Plot QTL Profile for barley MQM - chromosome 7.
plot(barleyMQM, plotType = "QTLProfileExt", chr = 7)
## ----plotCIbarleyMQM--------------------------------------------------------------------
## Plot confidence intervals for parental effects for maize MQM.
plot(barleyMQM, plotType = "parCIs")
## ----sumBarleyMQM-----------------------------------------------------------------------
## Summary.
summary(barleyMQM)
## ----ABCMQMPar, eval = FALSE------------------------------------------------------------
# ## Register parallel back-end with 2 cores.
# doParallel::registerDoParallel(cores = 2)
#
# ## Perform Multi-QTL Mapping.
# ABCMQM_Par <- selQTLMPP(MPPobj = ABCMPP,
# trait = "yield",
# threshold = 3,
# parallel = TRUE)
## ----winddown, include = FALSE------------------------------------------------
options(op)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.