| ci.rsqr | R Documentation |
Computes an approximate confidence interval for a population squared multiple correlation in a linear model with random predictor variables. This function uses the scaled central F approximation method. An approximate standard error is recovered from the confidence interval.
For more details, see Section 2.4 of Bonett (2021, Volume 2)
ci.rsqr(alpha, r2, s, n)
alpha |
alpha value for 1-alpha confidence |
r2 |
estimated unadjusted squared multiple correlation |
s |
number of predictor variables |
n |
sample size |
Returns a 1-row matrix. The columns are:
R-squared - estimate of unadjusted R-squared (from input)
adj R-squared - bias adjusted R-squared estimate
SE - recovered standard error
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
Helland1987statpsych
\insertRefBonett2021statpsych
ci.rsqr(.05, .247, 4, 150)
# Should return:
# R-squared adj R-squared SE LL UL
# 0.247 0.2262 0.06024 0.1152 0.3514
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.