R/condeff_boot.R

Defines functions insert_columns create_boot_cond_effect cond_effect_boot

Documented in cond_effect_boot

#' @details
#' [cond_effect_boot()] function is a wrapper of [cond_effect()].
#' It calls [cond_effect()]
#' once for each bootstrap sample, and then computes the nonparametric
#' bootstrap percentile confidence intervals (Cheung, Cheung, Lau, Hui,
#' & Vong, 2022). If the output object is the output of [std_selected()]
#' or [std_selected_boot()], in which mean-centering and/or standardization
#' have been conducted, they will be repeated in each bootstrap sample.
#' Therefore, like [std_selected_boot()], it can be used for form
#' nonparametric bootstrap confidence intervals for standardized
#' effects, though [cond_effect_boot()] does this for the standardized
#' conditional effects.
#'
#' This function ignores bootstrapping done by [std_selected_boot()]. It will
#' do its own bootstrapping.
#'
#' If `do_boot` is `FALSE`, then the object it returns is identical to that
#' by [cond_effect()].
#'
#' This function intentionally does not have an argument for setting the seed
#' for
#' random number. Users are recommended to set the seed, e.g., using
#' [set.seed()]
#' before calling it, to ensure reproducibility.
#'
#' @return
#'
#' [cond_effect_boot()] also returns a data-frame-like object of the
#' conditional effects of the class
#' `cond_effect`, with additional information from the bootstrapping stored
#' in these attributes:
#'
#' - `boot_ci`: A data frame of the bootstrap confidence intervals of the
#'              conditional effects.
#'
#' - `nboot`: The number of bootstrap samples requested.
#'
#' - `conf`: The level of confidence, in proportion.
#'
#' - `boot_est`: A matrix of the bootstrap estimates of the conditional effects.
#'               The number of rows equal to `nboot`, and the number of columns
#'               equal to the number of levels of the moderator.
#'
#' - `cond_effect_boot_call`: The call to `cond_effect_boot()`.
#'
#' - `boot_out`: If available, the original output from `boot::boot()`.
#'
#'
#' @param output The output from [stats::lm()]. It can also accept the output
#'               from
#'               [std_selected()] or [std_selected_boot()].
#' @param x      The focal variable (independent variable), that is, the
#'               variable with its effect on the outcome variable (dependent)
#'              being moderated. It must be a numeric variable.
#' @param w      The moderator. Both numeric variables and categorical variables
#'               (character or factor) are supported.
#' @param ...  Arguments to be passed to [cond_effect()].
#' @param conf The level of confidence for the confidence interval.
#'              Default is .95, to get 95% confidence intervals.
#' @param nboot The number of bootstrap samples. Default is 100.
#' @param boot_args A named list of arguments to be passed to [boot::boot()].
#'                 Default is `NULL`.
#' @param save_boot_est If `TRUE`, the default, the bootstrap estimates will
#'                      be saved in the element
#'                      `boot_est` of the output.
#' @param full_output Whether the full output from [boot::boot()] will be
#'                    returned.
#'                    Default is `FALSE`. If `TRUE`, the full output from
#'                    [boot::boot()] will be saved in the element `boot_out`
#'                    of the output.
#' @param do_boot Whether bootstrapping confidence intervals will be formed.
#'                Default is `TRUE`. If `FALSE`, all arguments related to
#'                bootstrapping will be ignored.
#'
#' @examples
#'
#' # Load a sample data set
#'
#' dat <- test_x_1_w_1_v_1_cat1_n_500
#'
#' # Do a moderated regression by lm
#' lm_raw <- lm(dv ~ iv*mod + v1 + cat1, dat)
#' summary(lm_raw)
#'
#' lm_std <- std_selected(lm_raw, to_standardize = ~ iv + mod)
#' cond_effect(lm_std, x = iv, w = mod)
#'
#' # Form nonparametric bootstrap confidence intervals
#' # Use 2000 or even 5000 for nboot in real research
#' out <- cond_effect_boot(lm_std, x = iv, w = mod, nboot = 50)
#' out
#'
#' @export
#' @describeIn cond_effect A wrapper of [cond_effect()] that forms
#'             nonparametric bootstrap confidence intervals.
#' @order 2

cond_effect_boot <- function(output,
                              x = NULL,
                              w = NULL,
                              ...,
                              conf = .95,
                              nboot = 100,
                              boot_args = NULL,
                              save_boot_est = TRUE,
                              full_output = FALSE,
                              do_boot = TRUE) {
    x0 <- deparse(substitute(x))
    if (inherits(tryCatch(x00 <- as.character(x), error = function(e) e),
                 "simpleError")) {
        x <- x0
      } else {
        x <- x00
      }
    w0 <- deparse(substitute(w))
    if (inherits(tryCatch(w00 <- as.character(w), error = function(e) e),
                 "simpleError")) {
        w <- w0
      } else {
        w <- w00
      }
    cond_effect_out <- cond_effect(output = output,
                                   x = x,
                                   w = w,
                                   ...)
    if (do_boot) {
        dat <- stats::model.frame(output)
        bootfct <- create_boot_cond_effect(output, x, w, ...)
        boot_out <- do.call(boot::boot,
                  c(list(data = dat,
                        statistic = bootfct,
                        R = nboot),
                        boot_args))
        p <- length(boot_out$t0)
        cis <- t(sapply(seq_len(p), function(x) {
                    boot::boot.ci(boot_out, conf = conf,
                                  type = "perc", index = x)$percent[4:5]
                  }))
        colnames(cis) <- c("CI Lower", "CI Upper")
        rownames(cis) <- cond_effect_out$Level
        attr(cond_effect_out, "boot_ci") <- cis
        cse <- which(colnames(cond_effect_out) == "Std. Error")
        cond_effect_out <- insert_columns(dat = cond_effect_out,
                                          x = cis,
                                          after = cse - 1)
        attr(cond_effect_out, "nboot") <- nboot
        attr(cond_effect_out, "conf") <- conf
        tmp <- boot_out$t
        colnames(tmp) <- cond_effect_out$Level
        attr(cond_effect_out, "boot_est") <- tmp
        attr(cond_effect_out, "cond_effect_boot_call") <- match.call()
        if (full_output) {
            attr(cond_effect_out, "boot_out") <- boot_out
          }
      }
    cond_effect_out
  }

create_boot_cond_effect <- function(output, x, w, ...) {
  if (is.null(output$std_selected_boot_call)) {
      out <- function(d, ind) {
                force(output)
                dat_i <- d[ind, ]
                out_i <- stats::update(output, data = dat_i)
                cond_effect(output = out_i,
                            x = x,
                            w = w,
                            ...)[, "x's Effect"]
              }
      return(out)
    } else {
      output$std_selected_boot_call$do_boot <- FALSE
      out <- function(d, ind) {
                force(output)
                dat_i <- d[ind, ]
                out_i <- stats::update(output, data = dat_i)
                cond_effect(output = out_i,
                            x = x,
                            w = w,
                            ...)[, "x's Effect"]
              }
    }
  }

insert_columns <- function(dat, x, after = 1) {
    k0 <- ncol(dat)
    names0 <- colnames(dat)
    if (is.null(dim(x))) {
        x <- cbind(x)
      }
    names1 <- colnames(x)
    k1 <- ncol(x)
    out <- dat
    names2 <- c(names0[1:after], names1, names0[(after + 1):k0])
    out[, (after + k1):(k0 + k1)] <- out[, after:k0]
    out[, (after + 1):(after + k1)] <- x
    colnames(out) <- names2
    out
  }

Try the stdmod package in your browser

Any scripts or data that you put into this service are public.

stdmod documentation built on Sept. 30, 2024, 9:42 a.m.