| RandomEffectsModel | R Documentation |
Stores current model state, prior parameters, and procedures for sampling from the conditional posterior of each parameter.
rfx_model_ptrExternal pointer to a C++ StochTree::RandomEffectsModel class
num_groupsNumber of groups in the random effects model
num_componentsNumber of components (i.e. dimension of basis) in the random effects model
new()Create a new RandomEffectsModel object.
RandomEffectsModel$new(num_components, num_groups)
num_componentsNumber of "components" or bases defining the random effects regression
num_groupsNumber of random effects groups
A new RandomEffectsModel object.
sample_random_effect()Sample from random effects model.
RandomEffectsModel$sample_random_effect( rfx_dataset, residual, rfx_tracker, rfx_samples, keep_sample, global_variance, rng )
rfx_datasetObject of type RandomEffectsDataset
residualObject of type Outcome
rfx_trackerObject of type RandomEffectsTracker
rfx_samplesObject of type RandomEffectSamples
keep_sampleWhether sample should be retained in rfx_samples. If FALSE, the state of rfx_tracker will be updated, but the parameter values will not be added to the sample container. Samples are commonly discarded due to burn-in or thinning.
global_varianceScalar global variance parameter
rngObject of type CppRNG
None
predict()Predict from (a single sample of a) random effects model.
RandomEffectsModel$predict(rfx_dataset, rfx_tracker)
rfx_datasetObject of type RandomEffectsDataset
rfx_trackerObject of type RandomEffectsTracker
Vector of predictions with size matching number of observations in rfx_dataset
set_working_parameter()Set value for the "working parameter." This is typically used for initialization, but could also be used to interrupt or override the sampler.
RandomEffectsModel$set_working_parameter(value)
valueParameter input
None
set_group_parameters()Set value for the "group parameters." This is typically used for initialization, but could also be used to interrupt or override the sampler.
RandomEffectsModel$set_group_parameters(value)
valueParameter input
None
set_working_parameter_cov()Set value for the working parameter covariance. This is typically used for initialization, but could also be used to interrupt or override the sampler.
RandomEffectsModel$set_working_parameter_cov(value)
valueParameter input
None
set_group_parameter_cov()Set value for the group parameter covariance. This is typically used for initialization, but could also be used to interrupt or override the sampler.
RandomEffectsModel$set_group_parameter_cov(value)
valueParameter input
None
set_variance_prior_shape()Set shape parameter for the group parameter variance prior.
RandomEffectsModel$set_variance_prior_shape(value)
valueParameter input
None
set_variance_prior_scale()Set shape parameter for the group parameter variance prior.
RandomEffectsModel$set_variance_prior_scale(value)
valueParameter input
None
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.