RandomEffectsModel | R Documentation |
Stores current model state, prior parameters, and procedures for sampling from the conditional posterior of each parameter.
rfx_model_ptr
External pointer to a C++ StochTree::RandomEffectsModel class
num_groups
Number of groups in the random effects model
num_components
Number of components (i.e. dimension of basis) in the random effects model
new()
Create a new RandomEffectsModel object.
RandomEffectsModel$new(num_components, num_groups)
num_components
Number of "components" or bases defining the random effects regression
num_groups
Number of random effects groups
A new RandomEffectsModel
object.
sample_random_effect()
Sample from random effects model.
RandomEffectsModel$sample_random_effect( rfx_dataset, residual, rfx_tracker, rfx_samples, keep_sample, global_variance, rng )
rfx_dataset
Object of type RandomEffectsDataset
residual
Object of type Outcome
rfx_tracker
Object of type RandomEffectsTracker
rfx_samples
Object of type RandomEffectSamples
keep_sample
Whether sample should be retained in rfx_samples
. If FALSE
, the state of rfx_tracker
will be updated, but the parameter values will not be added to the sample container. Samples are commonly discarded due to burn-in or thinning.
global_variance
Scalar global variance parameter
rng
Object of type CppRNG
None
predict()
Predict from (a single sample of a) random effects model.
RandomEffectsModel$predict(rfx_dataset, rfx_tracker)
rfx_dataset
Object of type RandomEffectsDataset
rfx_tracker
Object of type RandomEffectsTracker
Vector of predictions with size matching number of observations in rfx_dataset
set_working_parameter()
Set value for the "working parameter." This is typically used for initialization, but could also be used to interrupt or override the sampler.
RandomEffectsModel$set_working_parameter(value)
value
Parameter input
None
set_group_parameters()
Set value for the "group parameters." This is typically used for initialization, but could also be used to interrupt or override the sampler.
RandomEffectsModel$set_group_parameters(value)
value
Parameter input
None
set_working_parameter_cov()
Set value for the working parameter covariance. This is typically used for initialization, but could also be used to interrupt or override the sampler.
RandomEffectsModel$set_working_parameter_cov(value)
value
Parameter input
None
set_group_parameter_cov()
Set value for the group parameter covariance. This is typically used for initialization, but could also be used to interrupt or override the sampler.
RandomEffectsModel$set_group_parameter_cov(value)
value
Parameter input
None
set_variance_prior_shape()
Set shape parameter for the group parameter variance prior.
RandomEffectsModel$set_variance_prior_shape(value)
value
Parameter input
None
set_variance_prior_scale()
Set shape parameter for the group parameter variance prior.
RandomEffectsModel$set_variance_prior_scale(value)
value
Parameter input
None
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.