Nothing
#' Print of a fitted local spatio-temporal Poisson process model
#'
#' The function prints the main information of the distribution of the parameters
#' of a fitted local spatio-temporal Poisson process model.
#'
#' @param x An object of class \code{locstppm}
#' @param ... additional unused argument
#'
#' @export
#'
#' @author Nicoletta D'Angelo
#'
#' @seealso
#' \link{locstppm}, \link{summary.locstppm},
#' \link{plot.locstppm}
#'
#'
#'
#' @examples
#'
#' set.seed(2)
#' inh <- rstpp(lambda = function(x, y, t, a) {exp(a[1] + a[2]*x)},
#' par = c(0.005, 5))
#' inh_local <- locstppm(inh, formula = ~ x)
#'
#' inh_local
#'
#'
#'
#' @references
#' D'Angelo, N., Adelfio, G., and Mateu, J. (2023). Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes. Computational Statistics & Data Analysis, 180, 107679.
#'
#'
#'
print.locstppm <- function(x, ...){
if(ncol(x$IntCoefs_local) == 1){
cat("Homogeneous Poisson process \n")
cat("with median Intensity: ")
cat(as.numeric((as.numeric((median(x$IntCoefs_local[, 1])), 5))))
cat("\n\n")
} else {
cat("Inhomogeneous Poisson process \n")
cat("with Trend: ")
print(x$formula)
cat("\n")
}
cat("Summary of estimated coefficients \n")
print(summary(x$IntCoefs_local))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.