Nothing
#' Summary of a fitted LGCP model
#'
#' The function Summarises the main information on the fitted model.
#' provided. In this case of local parameters (both first- and second-order),
#' the summary function contains information on
#' their distributions.
#'
#' @param object An object of class \code{stlgcppm}
#' @param ... additional unused argument
#'
#' @export
#'
#' @author Nicoletta D'Angelo and Giada Adelfio
#'
#' @seealso
#' \link{stlgcppm}, \link{print.stlgcppm}, \link{localsummary},
#' \link{plot.stlgcppm}, \link{localplot}
#'
#'
#'
#' @examples
#'
#' catsub <- stp(greececatalog$df[1:200, ])
#'
#' lgcp1 <- stlgcppm(catsub)
#'
#' summary(lgcp1)
#'
#'
#'
#' @references
#' D'Angelo, N., Adelfio, G., and Mateu, J. (2023). Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes. Computational Statistics & Data Analysis, 180, 107679.
#'
#' Siino, M., Adelfio, G., and Mateu, J. (2018). Joint second-order parameter estimation for spatio-temporal log-Gaussian Cox processes. Stochastic environmental research and risk assessment, 32(12), 3525-3539.
#'
#'
summary.stlgcppm <- function(object, ...){
cat("\nJoint minimum contrast fit \n")
cat("for a log-Gaussian Cox process with \n")
if(inherits(object$IntCoefs, "numeric")){ cat("global ")} else { cat("local ")}
cat("first-order intensity and \n")
if(inherits(object$CovCoefs, "numeric")){ cat("global ")} else { cat("local ")}
cat("second-order intensity \n")
cat("--------------------------------------------------\n")
if(inherits(object$IntCoefs, "numeric")){
if(length(object$IntCoefs) == 1){
cat("Homogeneous Poisson process \n")
cat("with Intensity: ")
cat(as.numeric(round(as.numeric(exp(object$IntCoefs)), 5)))
cat("\n\n")
} else {
cat("Inhomogeneous Poisson process \n")
cat("with Trend: ")
print(object$formula)
cat("\n")
}
cat("Estimated coefficients of the first-order intensity: \n")
print(round(object$IntCoefs, 3))
} else {
if(ncol(object$IntCoefs) == 1){
cat("Homogeneous Poisson process \n")
cat("with median Intensity: ")
cat(as.numeric(round(as.numeric(exp(median(object$IntCoefs[, 1])), 5))))
cat("\n\n")
} else {
cat("Inhomogeneous Poisson process \n")
cat("with Trend: ")
print(object$formula)
cat("\n")
}
cat("Summary of estimated coefficients of the first-order intensity \n")
print(summary(object$IntCoefs))
}
cat("--------------------------------------------------\n")
cat("Covariance function: ")
cat(switch(object$cov,
"separable" = "separable \n\n",
"gneiting" = "gneiting \n\n",
"iaco-cesare" = "iaco-cesare \n\n"))
if(inherits(object$CovCoefs, "numeric")){
cat("Estimated coefficients of the second-order intensity: \n")
print(round(object$CovCoefs, 3))
} else {
cat("Summary of estimated coefficients of the second-order intensity \n")
print(summary(object$CovCoefs))
}
cat("--------------------------------------------------\n")
cat("Model fitted in ")
cat(object$time, "\n")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.