KLISTAhat | R Documentation |
Compute an estimate of the space-time K LISTA functions.
KLISTAhat(xyt, s.region, t.region, dist, times, lambda, correction = "isotropic")
xyt |
Coordinates and times |
s.region |
Two-column matrix specifying polygonal region containing all data locations. If |
t.region |
Vector containing the minimum and maximum values of the time interval. If |
dist |
Vector of distances |
times |
Vector of times |
lambda |
Vector of values of the space-time intensity function evaluated at the points |
correction |
A character vector specifying the edge correction(s) to be applied among |
An individual product density LISTA functions K^{(i)}(.,.)
should reveal the extent of the contribution of the event (u_i,t_i)
to the global estimator of the K-function K(.,.)
, and may provide a further description of structure in the data (e.g., determining events with similar local structure through dissimilarity measures of the individual LISTA functions), for more details see Siino et al. (2019).
A list containing:
list.KLISTA |
A list containing the values of the estimation of |
klistatheo |
|
dist , times |
Parameters passed in argument. |
correction |
The name(s) of the edge correction method(s) passed in argument. |
Francisco J. Rodriguez-Cortes <frrodriguezc@unal.edu.co>
Baddeley, A. and Turner, J. (2005). spatstat
: An R Package for Analyzing Spatial Point Pattens. Journal of Statistical Software 12, 1-42.
Cressie, N. and Collins, L. B. (2001). Analysis of spatial point patterns using bundles of product density LISA functions. Journal of Agricultural, Biological, and Environmental Statistics 6, 118-135.
Cressie, N. and Collins, L. B. (2001). Patterns in spatial point locations: Local indicators of spatial association in a minefield with clutter Naval Research Logistics (NRL), John Wiley & Sons, Inc. 48, 333-347.
Siino, M., Adelfio, G., Mateu, J. and Rodriguez-Cortes, F. J. (2019). Some properties of weighted local second-order statistcs for spatio-temporal point process. Submitted.
Stoyan, D. and Stoyan, H. (1994). Fractals, random shapes, and point fields: methods of geometrical statistics. Chichester: Wiley.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.