rlgcp | R Documentation |
Generate one (or several) realisation(s) of the log-Gaussian cox process
in a region S\times T
.
rlgcp(s.region, t.region, replace=TRUE, npoints=NULL, nsim=1,
nx=100, ny=100, nt=100,separable=TRUE,model="exponential",
param=c(1,1,1,1,1,1), scale=c(1,1),var.grf=1,mean.grf=0,
lmax=NULL,discrete.time=FALSE,exact=FALSE,anisotropy=FALSE,ani.pars=NULL)
s.region |
Two-column matrix specifying polygonal region containing
all data locations. If |
t.region |
Vector containing the minimum and maximum values of
the time interval. If |
npoints |
Number of points to simulate. If |
nsim |
number of simulations to generate. Default is 1. |
separable |
Logical. If |
model |
Vector of length 1 or 2 specifying the model(s) of
covariance of the Gaussian random field. If |
param |
|
scale |
Vector of length 2 defining the spatial and temporal scale. |
var.grf |
Variance of the Gaussian random field. |
mean.grf |
Mean of the Gaussian random field. |
replace |
Logical allowing times repeat. |
nx , ny , nt |
Define the size of the 3-D grid on which the intensity is evaluated. |
lmax |
Upper bound for the value of |
discrete.time |
If |
exact |
logical allowing exact simulation of Gaussian random fields (see manual for details). |
anisotropy |
If |
ani.pars |
Vector of length 2, the anisotropy angle and the anisotropy ratio, respectively (see details). |
We implemented stationary, isotropic spatio-temporal covariance functions.
Separable covariance functions
c(h,t) = c_s(\| h \|) \, c_t(|t|) , h \in S, t \in T
The purely spatial and purely temporal covariance functions can be:
Exponential: c(r) = \exp(-r)
,
Stable: c(r) = \exp(-r^\alpha)
,
\alpha \in [0,2]
,
Cauchy: c(r) = (1+r^2)^{-\alpha}
,
\alpha >0
,
Wave: c(r) = \frac{\sin(r)}{r}
if r>0
,
c(0)=1
,
Matern: c(r) = \frac{(\alpha r)^\nu}{2^{\nu-1}\Gamma(\nu)}
{\cal K}_{\nu}(\alpha r)
, \nu > 0
and \alpha > 0
.
{\cal K}_{\nu}
is the modified Bessel function of second kind:
{\cal K}_{\nu}(x) = \frac{\pi}{2} \frac{I_{-\nu}(x) -
I_{\nu}(x)}{\sin(\pi \nu)},
with
I_{\nu}(x) = \left( \frac{x}{2} \right)^{\nu} \sum_{k=0}^\infty
\frac{1}{k! \Gamma(\nu+k+1)} \left( \frac{x}{2} \right)^{2k}
.
The parameters \alpha_1
and \alpha_2
correspond
to the parameters of the spatial and temporal covariance respectively. For
the Matern model, the parameters \alpha_1
, \alpha_3
and \alpha_2
, \alpha_4
correspond
to the parameters \nu
, \alpha
of the spatial and temporal
covariance.
Non-separable covariance functions
The spatio-temporal covariance function can be:
Gneiting: c(h,t) = \psi (t^2/\beta_2)^{-\alpha_6} \phi \left(\frac{h^2/
\beta_1}{\psi (t^2/\beta_2)} \right)
, \beta_1, \beta_2 >0
are spatial and temporal scales respectively,
If \alpha_2=1
, \phi(r)
is the Stable model.
if \alpha_2=2
, \phi(r)
is the Cauchy model.
If \alpha_2=3
, \phi(r)
is the Matern model.
If \alpha_5=1
, \psi(r) = (r^{\alpha_3}+
1)^{\alpha_4}
,
If \alpha_5=2
, \psi(r) = (\alpha_4^{-1} r^{\alpha_3}
+1)/(r^{\alpha_3}+1)
,
If \alpha_5=3
, \psi(r) = \log(r^{\alpha_3} +
\alpha_4)/\log {\alpha_4}
,
The parameter \alpha_1
is the respective parameter for the model of
\phi(\cdot)
, \alpha_3 \in (0,1]
,
\alpha_4 \in (0,1]
and \alpha_6 \geq 2
.
cesare: c(h,t) = \left( 1 + (h/\beta_1)^{\alpha_1} +
(t/\beta_2)^{\alpha_2} \right)^{-\alpha_3}
, \beta_1, \beta_2 >0
, \alpha_1, \alpha_2 \in [1,2]
and \alpha_3 \geq 3/2
.
We also implemented anisotropic Log-Gaussian Cox processes.
We considered geometric spatial anisotropy (see Moller and Toftaker, 2014). In this case the covariance function
is elliptical and anisotropy is characterized by two parameters:
the anisotropy angle 0 \leq \theta < \pi
and the anisotropy ratio 0 < \delta \leq 1
of the minor axis 2 \omega \delta
and the major axis 2 \omega
.
C(h,t)=C_0\left( \sqrt{h \Sigma^{-1} h'},t \right), \ h \in R^2.
A list containing:
xyt |
Matrix (or list of matrices if |
s.region , t.region |
parameters passed in argument. |
Lambda |
|
Edith Gabriel <edith.gabriel@inrae.fr>, Peter J Diggle.
Chan, G. and Wood A. (1997). An algorithm for simulating stationary Gaussian random fields. Applied Statistics, Algorithm Section, 46, 171–181.
Chan, G. and Wood A. (1999). Simulation of stationary Gaussian vector fields. Statistics and Computing, 9, 265–268.
Gneiting T. (2002). Nonseparable, stationary covariance functions for space-time data. Journal of the American Statistical Association, 97, 590–600.
Moller J. and Toftaker H. (2014). Geometric anisotropic spatial point pattern analysis and Cox processes. Scandinavian Journal of Statistics, 41, 414–435.
plot.stpp
, animation
and stan
for plotting space-time point patterns.
# non separable covariance function:
lgcp1 <- rlgcp(npoints=200, nx=50, ny=50, nt=50, separable=FALSE,
model="gneiting", param=c(1,1,1,1,1,2), var.grf=1, mean.grf=0)
N <- lgcp1$Lambda[,,1];for(j in 2:(dim(lgcp1$Lambda)[3])){N <-
N+lgcp1$Lambda[,,j]}
image(N,col=grey((1000:1)/1000));box()
animation(lgcp1$xyt, cex=0.8, runtime=10, add=TRUE, prevalent="orange")
# separable covariance function:
lgcp2 <- rlgcp(npoints=200, nx=50, ny=50, nt=50, separable=TRUE,
model="exponential", param=c(1,1,1,1,1,2), var.grf=2, mean.grf=-0.5*2)
N <- lgcp2$Lambda[,,1];for(j in 2:(dim(lgcp2$Lambda)[3])){N <-
N+lgcp2$Lambda[,,j]}
image(N,col=grey((1000:1)/1000));box()
animation(lgcp2$xyt, cex=0.8, pch=20, runtime=10, add=TRUE,
prevalent="orange")
# anisotropic
sigma2=0.5
simlgcp <- rlgcp(npoints=500,nx=250, ny=200, nt=50,separable=TRUE,
s.region=matrix(c(0,2,2,0,0,0,0.5,0.5),byrow=FALSE,ncol=2), model="exponential",
param=c(1,1,1,1,1,2), var.grf=sigma2, mean.grf=-0.5*sigma2,anisotropy = TRUE,
ani.pars = c(pi/4,0.1))
N <- simlgcp$Lambda[,,1];for(j in 2:dim(simlgcp$Lambda)[3]){N <- N+simlgcp$Lambda[,,j]}
image(x=simlgcp$grid[[1]]$x,y=simlgcp$grid[[1]]$y,z=N,col=grey((1000:1)/1000));box()
points(simlgcp$xyt[,1:2],pch=19,cex=0.25,col=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.