PCFhat | R Documentation |
Compute an estimate of the space-time pair correlation function.
PCFhat(xyt, s.region, t.region, dist, times, lambda,
ks="box", hs, kt="box", ht, correction = "isotropic")
xyt |
Coordinates and times |
s.region |
Two-column matrix specifying polygonal region containing all data locations. If |
t.region |
Vector containing the minimum and maximum values of the time interval. If |
dist |
Vector of distances |
times |
Vector of times |
lambda |
Vector of values of the space-time intensity function evaluated at the points |
ks |
Kernel function for the spatial distances. Default is the |
hs |
Bandwidth of the kernel function |
kt |
Kernel function for the temporal distances. Default is the |
ht |
Bandwidth of the kernel function |
correction |
A character vector specifying the edge correction(s) to be applied among |
An approximately unbiased estimator for the space-time pair correlation function, based on data giving the locations of events x_i: i=1,...n
on a spatio-temporal region S \times T
, where S
is an arbitrary polygon and T
a time interval:
\widehat{g}(u,v)=\frac{1}{4\pi u}\sum_{i=1}^{n}\sum_{j \neq i} \frac{1}{w_{ij}}\frac{k_{s}(u-\|s_i-s_j\|)k_{t}(v-|t_i-t_j|)}{\lambda(x_i) \lambda(x_j)},
where \lambda(x_i)
is the intensity at x_i = (s_i,t_i)
and w_{ij}
is an edge correction factor to deal with spatial-temporal edge effects. The edge correction methods implemented are:
isotropic
: w_{ij} = |S \times T| w_{ij}^{(t)} w_{ij}^{(s)}
, where the temporal edge correction factor w_{ij}^{(t)} = 1
if both ends of the interval of length 2 |t_i - t_j|
centred at t_i
lie within T
and w_{ij}^{(t)}=1/2
otherwise and w_{ij}^{(s)}
is the proportion of the circumference of a circle centred at the location s_i
with radius \|s_i -s_j\|
lying in S
(also called Ripley's edge correction factor).
border
: w_{ij}=\frac{\sum_{j=1}^{n}\mathbf{1}\lbrace d(s_j,S)>u \ ; \ d(t_j,T) >v\rbrace/\lambda(x_j)}{\mathbf{1}_{\lbrace d(s_i,S) > u \ ; \ d(t_i,T) >v \rbrace}}
, where d(s_i,S)
denotes the distance between s_i
and the boundary of S
and d(t_i,T)
the distance between t_i
and the boundary of T
.
modified.border
: w_{ij} = \frac{|S_{\ominus u}|\times|T_{\ominus v}|}{\mathbf{1}_{\lbrace d(s_i,S) > u \ ; \ d(t_i,T) >v \rbrace}}
, where S_{\ominus u}
and T_{\ominus v}
are the eroded spatial and temporal region respectively, obtained by trimming off a margin of width u
and v
from the border of the original region.
translate
: w_{ij} =|S \cap S_{s_i-s_j}| \times |T \cap T_{t_i-t_j}|
, where S_{s_i-s_j}
and T_{t_i-t_j}
are the translated spatial and temporal regions.
none
: No edge correction is performed and w_{ij}=|S \times T|
.
k_s()
and k_t()
denotes kernel functions with bandwidth h_s
and h_t
. Experience with pair correlation function estimation recommends box kernels (the default), see Illian et al. (2008). Epanechnikov, Gaussian and biweight kernels are also implemented. Whatever the kernel function, if the bandwidth is missing, a value is obtain from the function dpik
of the package KernSmooth. Note that the bandwidths play an important role and their choice is crucial in the quality of the estimators as they heavily influence their variance.
A list containing:
pcf |
|
pcftheo |
|
dist , times |
Parameters passed in argument. |
kernel |
A vector of names and bandwidths of the spatial and temporal kernels. |
correction |
The name(s) of the edge correction method(s) passed in argument. |
Edith Gabriel <edith.gabriel@inrae.fr>
Baddeley, A., Rubak, E., Turner, R., (2015). Spatial Point Patterns: Methodology and Applications with R. CRC Press, Boca Raton.
Gabriel E., Diggle P. (2009). Second-order analysis of inhomogeneous spatio-temporal point process data. Statistica Neerlandica, 63, 43–51.
Gabriel E., Rowlingson B., Diggle P. (2013). stpp: an R package for plotting, simulating and analyzing Spatio-Temporal Point Patterns. Journal of Statistical Software, 53(2), 1–29.
Gabriel E. (2014). Estimating second-order characteristics of inhomogeneous spatio-temporal point processes: influence of edge correction methods and intensity estimates. Methodology and computing in Applied Probabillity, 16(2), 411–431.
Illian JB, Penttinen A, Stoyan H and Stoyan, D. (2008). Statistical Analysis and Modelling of Spatial Point Patterns. John Wiley and Sons, London.
# First example
data(fmd)
data(northcumbria)
FMD<-as.3dpoints(fmd[,1]/1000,fmd[,2]/1000,fmd[,3])
Northcumbria=northcumbria/1000
# estimation of the temporal intensity
Mt<-density(FMD[,3],n=1000)
mut<-Mt$y[findInterval(FMD[,3],Mt$x)]*dim(FMD)[1]
# estimation of the spatial intensity
h<-mse2d(as.points(FMD[,1:2]), Northcumbria, nsmse=50, range=4)
h<-h$h[which.min(h$mse)]
Ms<-kernel2d(as.points(FMD[,1:2]), Northcumbria, h, nx=500, ny=500)
atx<-findInterval(x=FMD[,1],vec=Ms$x)
aty<-findInterval(x=FMD[,2],vec=Ms$y)
mhat<-NULL
for(i in 1:length(atx)) mhat<-c(mhat,Ms$z[atx[i],aty[i]])
# estimation of the pair correlation function
g1 <- PCFhat(xyt=FMD, dist=1:15, times=1:15, lambda=mhat*mut/dim(FMD)[1],
s.region=northcumbria/1000,t.region=c(1,200))
# plotting the estimation
plotPCF(g1)
plotPCF(g1,type="persp",theta=-65,phi=35)
# Second example
xyt=rpp(lambda=200)
g2=PCFhat(xyt$xyt,dist=seq(0,0.16,by=0.02),
times=seq(0,0.16,by=0.02),correction=c("border","translate"))
plotPCF(g2,type="contour",which="border")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.