Nothing
#' Distance to Center
#'
#' Calculates the distance from center of the matrix of predictor variables
#' using a euclidean distance, or the average of all x-dimensions.
#' @param formula A formula object.
#' @param data A data.frame object.
#' @return A vector of distances from the center.
#' @details
#' Formula used to calculate the center point:
#' \deqn{\bar{x} = \frac{1}{N}\sum_{j = 1}^N x_{ij}}
#' Where \strong{\eqn{\bar{x}}} is a vector of the center of the x-dimensions,
#' \eqn{N} is the number of rows in the matrix, and \eqn{x_{ij}} is the
#' \eqn{i,j^{th}} entry in the matrix.
#' @examples
#' data <- data_gen_lm(10)
#' dist <- dist_cent(Y ~ ., data)
#' dist
#' @importFrom stats model.matrix model.response model.frame
#' @export
dist_cent <- function(formula, data){
t_data <- model.matrix(formula, data = data)[, -1]
t_response <- model.response(model.frame(formula, data = data))
scaled_data <- scale(t_data)
center <- apply(scaled_data, 2, mean)
dist <- vector("numeric", length = nrow(data))
dist <- apply(scaled_data, 1, function(x) {
euclid <- euclid_dist(center, x)
euclid
})
dist
}
euclid_dist <- function(x, y) {
sqrt(sum((x - y)^2))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.