Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(survML)
library(ggplot2)
library(dplyr)
set.seed(102524)
## -----------------------------------------------------------------------------
# Simulate some current status data
n <- 250
x <- cbind(2*rbinom(n, size = 1, prob = 0.5)-1,
2*rbinom(n, size = 1, prob = 0.5)-1)
t <- rweibull(n,
shape = 0.75,
scale = exp(0.8*x[,1] - 0.4*x[,2]))
y <- rweibull(n,
shape = 0.75,
scale = exp(0.8*x[,1] - 0.4*x[,2]))
# Round y to nearest quantile of y, just so there aren't so many unique values
# This will speed computation in this example analysis
quants <- quantile(y, probs = seq(0, 1, by = 0.025), type = 1)
for (i in 1:length(y)){
y[i] <- quants[which.min(abs(y[i] - quants))]
}
delta <- as.numeric(t <= y)
dat <- data.frame(y = y, delta = delta, x1 = x[,1], x2 = x[,2])
dat$delta[dat$y > 1.65] <- NA
dat$y[dat$y > 1.65] <- NA
## -----------------------------------------------------------------------------
eval_region <- c(0.02, 1.5)
res <- currstatCIR(time = dat$y,
event = dat$delta,
X = dat[,3:4],
SL_control = list(SL.library = c("SL.mean", "SL.glm"),
V = 2),
HAL_control = list(n_bins = c(5),
grid_type = c("equal_mass", "equal_range"),
V = 2),
eval_region = eval_region,
n_eval_pts = 1000)
## -----------------------------------------------------------------------------
# use Monte Carlo to approximate the true survival function
n_test <- 5e5
x_test <- cbind(2*rbinom(n_test, size = 1, prob = 0.5)-1,
2*rbinom(n_test, size = 1, prob = 0.5)-1)
t_test <- rweibull(n_test,
shape = 0.75,
scale = exp(0.8*x_test[,1] - 0.4*x_test[,2]))
S0 <- function(x){
return(mean(t_test > x))
}
other_data <- data.frame(t = seq(min(res$t), max(res$t), length.out = 1000))
other_data$y <- apply(as.matrix(other_data$t), MARGIN = 1, FUN = S0)
# plot the results
p1 <- ggplot(data = res, aes(x = t)) +
geom_step(aes(y = S_hat_est)) +
geom_step(aes(y = S_hat_cil), linetype = "dashed") +
geom_step(aes(y = S_hat_ciu), linetype = "dashed") +
geom_smooth(data = other_data, aes(x = t, y = y), color = "red") +
theme_bw() +
ylab("Estimated survival probability") +
xlab("Time") +
scale_y_continuous(limits = c(0, 1)) +
ggtitle("Covariate-adjusted survival curve")
p1
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.