Forecasting Time Series Groups in the tidyverse"

knitr::opts_chunk$set(
    # message = FALSE,
    # warning = FALSE,
    fig.width = 8, 
    fig.height = 4.5,
    fig.align = 'center',
    out.width='95%', 
    dpi = 200
)

# devtools::load_all() # Travis CI fails on load_all()

Extending broom to time series forecasting

One of the most powerful benefits of sweep is that it helps forecasting at scale within the "tidyverse". There are two common situations:

  1. Applying a model to groups of time series
  2. Applying multiple models to a time series

In this vignette we'll review how sweep can help the first situation: Applying a model to groups of time series.

Prerequisites

Before we get started, load the following packages.

library(tidyverse)
library(tidyquant)
library(timetk)
library(sweep)
library(forecast)

Bike Sales

We'll use the bike sales data set, bike_sales, provided with the sweep package for this tutorial. The bike_sales data set is a fictional daily order history that spans 2011 through 2015. It simulates a sales database that is typical of a business. The customers are the "bike shops" and the products are the "models".

bike_sales

We'll analyse the monthly sales trends for the bicycle manufacturer. Let's transform the data set by aggregating by month.

bike_sales_monthly <- bike_sales %>%
    mutate(month = month(order.date, label = TRUE),
           year  = year(order.date)) %>%
    group_by(year, month) %>%
    summarise(total.qty = sum(quantity)) 
bike_sales_monthly

We can visualize package with a month plot using the ggplot2 .

bike_sales_monthly %>%
    ggplot(aes(x = month, y = total.qty, group = year)) +
    geom_area(aes(fill = year), position = "stack") +
    labs(title = "Quantity Sold: Month Plot", x = "", y = "Sales",
         subtitle = "March through July tend to be most active") +
    scale_y_continuous() +
    theme_tq()

Suppose Manufacturing wants a more granular forecast because the bike components are related to the secondary category. In the next section we discuss how sweep can help to perform a forecast on each sub-category.

Performing Forecasts on Groups

First, we need to get the data organized into groups by month of the year. We'll create a new "order.month" date using zoo::as.yearmon() that captures the year and month information from the "order.date" and then passing this to lubridate::as_date() to convert to date format.

monthly_qty_by_cat2 <- bike_sales %>%
    mutate(order.month = as_date(as.yearmon(order.date))) %>%
    group_by(category.secondary, order.month) %>%
    summarise(total.qty = sum(quantity))
monthly_qty_by_cat2

Next, we use the nest() function from the tidyr package to consolidate each time series by group. The newly created list-column, "data.tbl", contains the "order.month" and "total.qty" columns by group from the previous step. The nest() function just bundles the data together which is very useful for iterative functional programming.

monthly_qty_by_cat2_nest <- monthly_qty_by_cat2 %>%
    group_by(category.secondary) %>%
    nest()
monthly_qty_by_cat2_nest

Forecasting Workflow

The forecasting workflow involves a few basic steps:

  1. Step 1: Coerce to a ts object class.
  2. Step 2: Apply a model (or set of models)
  3. Step 3: Forecast the models (similar to predict)
  4. Step 4: Tidy the forecast

Step 1: Coerce to a ts object class

In this step we map the tk_ts() function into a new column "data.ts". The procedure is performed using the combination of dplyr::mutate() and purrr::map(), which works really well for the data science workflow where analyses are built progressively. As a result, this combination will be used in many of the subsequent steps in this vignette as we build the analysis.

mutate and map

The mutate() function adds a column, and the map() function maps the contents of a list-column (.x) to a function (.f). In our case, .x = data.tbl and .f = tk_ts. The arguments select = -order.month, start = 2011, and freq = 12 are passed to the ... parameters in map, which are passed through to the function. The select statement is used to drop the "order.month" from the final output so we don't get a bunch of warning messages. We specify start = 2011 and freq = 12 to return a monthly frequency.

monthly_qty_by_cat2_ts <- monthly_qty_by_cat2_nest %>%
    mutate(data.ts = map(.x       = data, 
                         .f       = tk_ts, 
                         select   = -order.month, 
                         start    = 2011,
                         freq     = 12))
monthly_qty_by_cat2_ts

Step 2: Modeling a time series

Next, we map the Exponential Smoothing ETS (Error, Trend, Seasonal) model function, ets, from the forecast package. Use the combination of mutate to add a column and map to interatively apply a function rowwise to a list-column. In this instance, the function to map the ets function and the list-column is "data.ts". We rename the resultant column "fit.ets" indicating an ETS model was fit to the time series data.

monthly_qty_by_cat2_fit <- monthly_qty_by_cat2_ts %>%
    mutate(fit.ets = map(data.ts, ets))
monthly_qty_by_cat2_fit

At this point, we can do some model inspection with the sweep tidiers.

sw_tidy

To get the model parameters for each nested list, we can combine sw_tidy within the mutate and map combo. The only real difference is now we unnest the generated column (named "tidy"). Last, because it's easier to compare the model parameters side by side, we add one additional call to spread() from the tidyr package.

monthly_qty_by_cat2_fit %>%
    mutate(tidy = map(fit.ets, sw_tidy)) %>%
    unnest(tidy) %>%
    spread(key = category.secondary, value = estimate)

sw_glance

We can view the model accuracies also by mapping sw_glance within the mutate and map combo.

monthly_qty_by_cat2_fit %>%
    mutate(glance = map(fit.ets, sw_glance)) %>%
    unnest(glance)

sw_augment

The augmented fitted and residual values can be achieved in much the same manner. This returns nine groups data. Note that we pass timetk_idx = TRUE to return the date format times as opposed to the regular (yearmon or numeric) time series.

augment_fit_ets <- monthly_qty_by_cat2_fit %>%
    mutate(augment = map(fit.ets, sw_augment, timetk_idx = TRUE, rename_index = "date")) %>%
    unnest(augment)

augment_fit_ets

We can plot the residuals for the nine categories like so. Unfortunately we do see some very high residuals (especially with "Fat Bike"). This is often the case with realworld data.

augment_fit_ets %>%
    ggplot(aes(x = date, y = .resid, group = category.secondary)) +
    geom_hline(yintercept = 0, color = "grey40") +
    geom_line(color = palette_light()[[2]]) +
    geom_smooth(method = "loess") +
    labs(title = "Bike Quantity Sold By Secondary Category",
         subtitle = "ETS Model Residuals", x = "") + 
    theme_tq() +
    facet_wrap(~ category.secondary, scale = "free_y", ncol = 3) +
    scale_x_date(date_labels = "%Y")

sw_tidy_decomp

We can create decompositions using the same procedure with sw_tidy_decomp() and the mutate and map combo.

monthly_qty_by_cat2_fit %>%
    mutate(decomp = map(fit.ets, sw_tidy_decomp, timetk_idx = TRUE, rename_index = "date")) %>%
    unnest(decomp)

Step 3: Forecasting the model

We can also forecast the multiple models again using a very similar approach with the forecast function. We want a 12 month forecast so we add the argument for the h = 12 (refer to ?forecast for all of the parameters you can add, there's quite a few).

monthly_qty_by_cat2_fcast <- monthly_qty_by_cat2_fit %>%
    mutate(fcast.ets = map(fit.ets, forecast, h = 12))
monthly_qty_by_cat2_fcast

Step 4: Tidy the forecast

Next, we can apply sw_sweep to get the forecast in a nice "tidy" data frame. We use the argument fitted = FALSE to remove the fitted values from the forecast (leave off if fitted values are desired). We set timetk_idx = TRUE to use dates instead of numeric values for the index. We'll use unnest() to drop the left over list-columns and return an unnested data frame.

monthly_qty_by_cat2_fcast_tidy <- monthly_qty_by_cat2_fcast %>%
    mutate(sweep = map(fcast.ets, sw_sweep, fitted = FALSE, timetk_idx = TRUE)) %>%
    unnest(sweep)
monthly_qty_by_cat2_fcast_tidy

Visualization is just one final step.

monthly_qty_by_cat2_fcast_tidy %>%
    ggplot(aes(x = index, y = total.qty, color = key, group = category.secondary)) +
    geom_ribbon(aes(ymin = lo.95, ymax = hi.95), 
                fill = "#D5DBFF", color = NA, size = 0) +
    geom_ribbon(aes(ymin = lo.80, ymax = hi.80, fill = key), 
                fill = "#596DD5", color = NA, size = 0, alpha = 0.8) +
    geom_line() +
    labs(title = "Bike Quantity Sold By Secondary Category",
         subtitle = "ETS Model Forecasts",
         x = "", y = "Units") +
    scale_x_date(date_breaks = "1 year", date_labels = "%Y") +
    scale_color_tq() +
    scale_fill_tq() +
    facet_wrap(~ category.secondary, scales = "free_y", ncol = 3) +
    theme_tq() +
    theme(axis.text.x = element_text(angle = 45, hjust = 1))

Recap

The sweep package has a several tools to analyze grouped time series. In the next vignette we will review how to apply multiple models to a time series.



Try the sweep package in your browser

Any scripts or data that you put into this service are public.

sweep documentation built on July 9, 2023, 7:10 p.m.