| tidiers_nnetar | R Documentation |
These methods tidy the coefficients of NNETAR models of univariate time series.
## S3 method for class 'nnetar'
sw_tidy(x, ...)
## S3 method for class 'nnetar'
sw_glance(x, ...)
## S3 method for class 'nnetar'
sw_augment(x, data = NULL, timetk_idx = FALSE, rename_index = "index", ...)
x |
An object of class "nnetar" |
... |
Additional parameters (not used) |
data |
Used with |
timetk_idx |
Used with |
rename_index |
Used with |
sw_tidy() returns one row for each model parameter,
with two columns:
term: The smoothing parameters (alpha, gamma) and the initial states
(l, s0 through s10)
estimate: The estimated parameter value
sw_glance() returns one row with the columns
model.desc: A description of the model including the
three integer components (p, d, q) are the AR order,
the degree of differencing, and the MA order.
sigma: The square root of the estimated residual variance
logLik: The data's log-likelihood under the model (NA)
AIC: The Akaike Information Criterion (NA)
BIC: The Bayesian Information Criterion (NA)
ME: Mean error
RMSE: Root mean squared error
MAE: Mean absolute error
MPE: Mean percentage error
MAPE: Mean absolute percentage error
MASE: Mean absolute scaled error
ACF1: Autocorrelation of errors at lag 1
sw_augment() returns a tibble with the following time series attributes:
index: An index is either attempted to be extracted from the model or
a sequential index is created for plotting purposes
.actual: The original time series
.fitted: The fitted values from the model
.resid: The residual values from the model
nnetar()
library(dplyr)
library(forecast)
library(sweep)
fit_nnetar <- lynx %>%
nnetar()
sw_tidy(fit_nnetar)
sw_glance(fit_nnetar)
sw_augment(fit_nnetar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.