Nothing
# Split the data according to the equations
data_msel <- function(object, data = NULL)
{
# Get some variables
is1 <- object$other$is1
is2 <- object$other$is2
is3 <- object$other$is3
is_het <- object$other$is_het
estimator <- object$estimator
n_eq <- object$other$n_eq
n_eq2 <- object$other$n_eq2
n_eq3 <- object$other$n_eq3
formula <- object$formula
formula2 <- object$formula2
formula3 <- object$formula3
formula_mean <- object$other$formula_mean
formula_var <- object$other$formula_var
if (is.null(data))
{
object <- object$data
}
n_obs <- nrow(data)
# Seperate the dataframes for the mean and variance equations
# of the ordered equations
df_mean <- NULL
df_var <- NULL
if (is1)
{
df_mean <- vector(mode = "list", length = n_eq)
df_var <- vector(mode = "list", length = n_eq)
for (i in seq_len(n_eq))
{
df_mean[[i]] <- model.frame(formula_mean[[i]], data,
na.action = na.pass)
if (is_het[i])
{
df_var[[i]] <- model.frame(formula_var[[i]], data,
na.action = na.pass)
}
}
}
# dataframe for the continuous equations
df2 <- NULL
if (is2)
{
df2 <- vector(mode = "list", length = n_eq2)
for (i in seq_len(n_eq2))
{
df2[[i]] <- model.frame(formula2[[i]], data, na.action = na.pass)
}
}
# dataframe for the multinomial equation
df3 <- NULL
if (is3)
{
df3 <- model.frame(formula3, data, na.action = na.pass)
}
# Extract the variables of the ordinal equations
z <- matrix(NA)
W_mean <- list(matrix())
W_var <- list(matrix())
if (is1)
{
z <- matrix(NA, nrow = n_obs, ncol = n_eq)
W_mean <- vector("mode" = "list", length = n_eq)
W_var <- vector("mode" = "list", length = n_eq)
for (i in seq_len(n_eq))
{
z[, i] <- as.vector(df_mean[[i]][, 1])
W_mean[[i]] <- as.matrix(df_mean[[i]][, -1, drop = FALSE])
if (is_het[i])
{
W_var[[i]] <- as.matrix(df_var[[i]][, -1, drop = FALSE])
}
else
{
W_var[[i]] <- matrix()
}
}
z[z == -1] <- NA
}
# Extract the variables of the continuous equations
y <- matrix(NA)
X <- list(matrix())
if (is2)
{
y <- matrix(NA, nrow = n_obs, ncol = n_eq2)
X <- vector("mode" = "list", length = n_eq2)
for (i in seq_len(n_eq2))
{
y[, i] <- as.vector(df2[[i]][, 1])
X[[i]] <- cbind(1, as.matrix(df2[[i]][, -1, drop = FALSE]))
colnames(X[[i]])[1] <- "(Intercept)"
}
}
# Extract the variables of the multinomial equation
z_mn <- vector(mode = "numeric")
W_mn <- matrix(NA)
if (is3)
{
z_mn <- df3[, 1]
z_mn[z_mn == -1] <- NA
W_mn <- as.matrix(cbind(1, df3[, -1, drop = FALSE]))
colnames(W_mn)[1] <- "(Intercept)"
}
# Store the data to the output
out <- list(W_mean = W_mean, W_var = W_var, X = X, W_mn = W_mn,
z = z, y = y, z_mn = z_mn)
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.