Description Details References Examples
The package tailDepFun
provides functions implementing two rank-based minimal distance estimation
methods for parametric tail dependence models for distributions attracted to a max-stable law.
The estimators, referred to as the pairwise M-estimator and the weighted least squares estimator, are
described in Einmahl et al. (2016a) and Einmahl et al. (2016b). Extensive examples to illustrate the use
of the package can be found in the accompanying vignette.
Currently, this package allows for estimation of the Brown-Resnick process, the Gumbel (or logistic) model
and max-linear models (possibly on a directed acyclic graph). The main functions of this package are
EstimationBR
, EstimationGumbel
and EstimationMaxLinear
,
but several other functions are exported as well: stdfEmpInt
returns the integral of the bivariate empirical stable tail dependence function over the unit square, and
stdfEmp
and stdfEmpCorr
return the (bias-corrected) empirical stable tail dependence
function. The functions AsymVarBR
, AsymVarGumbel
, AsymVarMaxLinear
return the asymptotic covariance matrices of the estimators. An auxiliary function to select a regular
grid of indices in which to evaluate the stable tail dependence function is exported as well,
selectGrid
. Finally, two datasets are available: dataKNMI
(Einmahl et al., 2016)
and dataEUROSTOXX
(Einmahl et al., 2018).
Einmahl, J.H.J., Kiriliouk, A., Krajina, A., and Segers, J. (2016). An Mestimator of spatial tail dependence. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78(1), 275-298.
Einmahl, J.H.J., Kiriliouk, A., and Segers, J. (2018). A continuous updating weighted least squares estimator of tail dependence in high dimensions. Extremes 21(2), 205-233.
1 2 | ## get a list of all help files of user-visible functions in the package
help(package = tailDepFun)
|
Information on package 'tailDepFun'
Description:
Package: tailDepFun
Type: Package
Title: Minimum Distance Estimation of Tail Dependence
Models
Description: Provides functions implementing minimal distance
estimation methods for parametric tail dependence
models.
Version: 1.0.0
Date: 2016-03-25
Author: Anna Kiriliouk
Maintainer: Anna Kiriliouk <anna.kiriliouk@uclouvain.be>
Depends: R (>= 3.2.3)
Imports: cubature, mvtnorm, SpatialExtremes, copula, stats,
utils
Suggests: R.rsp
VignetteBuilder: R.rsp
License: GPL-3
LazyData: true
Collate: 'Other.R' 'helpFunctions.R' 'EstimationBR.R'
'EstimationGumbel.R' 'EstimationML.R'
RoxygenNote: 5.0.1
NeedsCompilation: yes
Packaged: 2016-03-26 15:23:02 UTC; Anna
Repository: CRAN
Date/Publication: 2016-03-26 17:09:04
Built: R 3.4.1; x86_64-pc-linux-gnu; 2017-09-22 15:12:13
UTC; unix
Index:
AsymVarBR Asymptotic variance matrix for the
Brown-Resnick process.
AsymVarGumbel Asymptotic variance matrix for the Gumbel
model.
AsymVarMaxLinear Asymptotic variance matrix for the max-linear
model.
EstimationBR Estimation of the parameters of the
Brown-Resnick process
EstimationGumbel Estimation of the parameter of the Gumbel model
EstimationMaxLinear Estimation of the parameters of the max-linear
model
dataEUROSTOXX EUROSTOXX50 weekly negative log-returns.
dataKNMI Wind speeds in the Netherlands.
selectGrid Selects a grid of indices.
stdfEmp Empirical stable tail dependence function
stdfEmpCorr Bias-corrected empirical stable tail dependence
function
stdfEmpInt Integrated empirical stable tail dependence
function
tailDepFun tailDepFun
Further information is available in the following vignettes in
directory '/usr/local/lib/R/site-library/tailDepFun/doc':
vignette.pdf: Vignette for the tailDep package (source, pdf)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.