Description Usage Arguments Details Value References See Also Examples
Computes the asymptotic variance matrix for the Brown-Resnick process, estimated using the pairwise M-estimator or the weighted least squares estimator.
1 |
locations |
A d x 2 matrix containing the Cartesian coordinates of d points in the plane. |
indices |
A q x d matrix containing exactly 2 ones per row, representing a pair of points from the matrix |
par |
The parameters of the Brown-Resnick process. Either (α,ρ) for an isotropic process or (α,ρ,β,c) for an anisotropic process. |
method |
Choose between "Mestimator" and "WLS". |
Tol |
For "Mestimator" only. The tolerance in the numerical integration procedure. Defaults to 1e-05. |
The parameters of a The matrix indices
can be either user-defined or returned from the function selectGrid
with cst = c(0,1)
. Calculation might be rather slow for method = "Mestimator"
.
A q
by q
matrix.
Einmahl, J.H.J., Kiriliouk, A., Krajina, A., and Segers, J. (2016). An Mestimator of spatial tail dependence. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78(1), 275-298.
Einmahl, J.H.J., Kiriliouk, A., and Segers, J. (2018). A continuous updating weighted least squares estimator of tail dependence in high dimensions. Extremes 21(2), 205-233.
1 2 3 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.