Description Usage Arguments Value References See Also Examples
Computes the asymptotic variance matrix for the max-linear model, estimated using the weighted least squares estimator.
1 | AsymVarMaxLinear(indices, par, Bmatrix = NULL)
|
indices |
A q x d matrix containing at least 2 non-zero elements per row, representing the values in which we will evaluate the stable tail dependence function. |
par |
The parameter vector. |
Bmatrix |
A function that converts the parameter vector theta to a parameter matrix B. If |
A q
by q
matrix.
Einmahl, J.H.J., Kiriliouk, A., and Segers, J. (2018). A continuous updating weighted least squares estimator of tail dependence in high dimensions. Extremes 21(2), 205-233.
1 2 | indices <- selectGrid(c(0,0.5,1), d = 3, nonzero = 3)
AsymVarMaxLinear(indices, par = c(0.1,0.55,0.75))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.