View source: R/tm_t_abnormality.R
tm_t_abnormality | R Documentation |
This module produces a table to summarize abnormality.
tm_t_abnormality(
label,
dataname,
parentname = ifelse(inherits(arm_var, "data_extract_spec"),
teal.transform::datanames_input(arm_var), "ADSL"),
arm_var,
by_vars,
grade,
abnormal = list(low = c("LOW", "LOW LOW"), high = c("HIGH", "HIGH HIGH")),
id_var = teal.transform::choices_selected(teal.transform::variable_choices(dataname,
subset = "USUBJID"), selected = "USUBJID", fixed = TRUE),
baseline_var =
teal.transform::choices_selected(teal.transform::variable_choices(dataname, subset =
"BNRIND"), selected = "BNRIND", fixed = TRUE),
treatment_flag_var =
teal.transform::choices_selected(teal.transform::variable_choices(dataname, subset =
"ONTRTFL"), selected = "ONTRTFL", fixed = TRUE),
treatment_flag = teal.transform::choices_selected("Y"),
add_total = TRUE,
total_label = default_total_label(),
exclude_base_abn = FALSE,
drop_arm_levels = TRUE,
pre_output = NULL,
post_output = NULL,
na_level = default_na_str(),
basic_table_args = teal.widgets::basic_table_args(),
transformators = list(),
decorators = list()
)
a teal_module
object.
This module generates the following objects, which can be modified in place using decorators:
table
(TableTree
- output of rtables::build_table()
)
A Decorator is applied to the specific output using a named list of teal_transform_module
objects.
The name of this list corresponds to the name of the output to which the decorator is applied.
See code snippet below:
tm_t_abnormality( ..., # arguments for module decorators = list( table = teal_transform_module(...) # applied only to `table` output ) )
For additional details and examples of decorators, refer to the vignette
vignette("decorate-module-output", package = "teal.modules.clinical")
.
To learn more please refer to the vignette
vignette("transform-module-output", package = "teal")
or the teal::teal_transform_module()
documentation.
Patients with the same abnormality at baseline as on the treatment visit can be
excluded in accordance with GDSR specifications by using exclude_base_abn
.
The TLG Catalog where additional example apps implementing this module can be found.
library(dplyr)
data <- teal_data()
data <- within(data, {
ADSL <- tmc_ex_adsl
ADLB <- tmc_ex_adlb %>%
mutate(
ONTRTFL = case_when(
AVISIT %in% c("SCREENING", "BASELINE") ~ "",
TRUE ~ "Y"
) %>% with_label("On Treatment Record Flag")
)
})
join_keys(data) <- default_cdisc_join_keys[names(data)]
ADSL <- data[["ADSL"]]
ADLB <- data[["ADLB"]]
app <- init(
data = data,
modules = modules(
tm_t_abnormality(
label = "Abnormality Table",
dataname = "ADLB",
arm_var = choices_selected(
choices = variable_choices(ADSL, subset = c("ARM", "ARMCD")),
selected = "ARM"
),
add_total = FALSE,
by_vars = choices_selected(
choices = variable_choices(ADLB, subset = c("LBCAT", "PARAM", "AVISIT")),
selected = c("LBCAT", "PARAM"),
keep_order = TRUE
),
baseline_var = choices_selected(
variable_choices(ADLB, subset = "BNRIND"),
selected = "BNRIND", fixed = TRUE
),
grade = choices_selected(
choices = variable_choices(ADLB, subset = "ANRIND"),
selected = "ANRIND",
fixed = TRUE
),
abnormal = list(low = "LOW", high = "HIGH"),
exclude_base_abn = FALSE
)
)
)
if (interactive()) {
shinyApp(app$ui, app$server)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.