Nothing
#' Template: Abnormality Summary Table
#'
#' Creates a valid expression to generate a table to summarize abnormality.
#'
#' @inheritParams template_arguments
#' @param exclude_base_abn (`logical`)\cr whether to exclude patients who had abnormal values at baseline.
#' @param grade (`character`)\cr name of the variable used to
#' specify the abnormality grade. Variable must be factor.
#' @param abnormal (`named list`)\cr indicating abnormality direction and grades.
#' @param baseline_var (`character`)\cr
#' name of the variable specifying baseline abnormality grade.
#' @param na_level (`character`)\cr the NA level in the input dataset, defaults to `"<Missing>"`.
#' @param tbl_title (`character`)\cr Title with label of variables from by bars
#'
#' @inherit template_arguments return
#'
#' @seealso [tm_t_abnormality()]
#' @keywords internal
#'
template_abnormality <- function(parentname,
dataname,
arm_var,
id_var = "USUBJID",
by_vars,
abnormal = list(low = c("LOW", "LOW LOW"), high = c("HIGH", "HIGH HIGH")),
grade = "ANRIND",
baseline_var = "BNRIND",
treatment_flag_var = "ONTRTFL",
treatment_flag = "Y",
add_total = FALSE,
total_label = default_total_label(),
exclude_base_abn = FALSE,
drop_arm_levels = TRUE,
na_level = default_na_str(),
basic_table_args = teal.widgets::basic_table_args(),
tbl_title) {
checkmate::assert_string(dataname)
checkmate::assert_string(id_var)
checkmate::assert_string(parentname)
checkmate::assert_string(arm_var)
checkmate::check_character(by_vars)
checkmate::check_list(abnormal)
checkmate::assert_string(grade)
checkmate::assert_string(baseline_var)
checkmate::assert_string(treatment_flag_var)
checkmate::assert_string(treatment_flag)
checkmate::assert_flag(add_total)
checkmate::assert_string(total_label)
checkmate::assert_flag(exclude_base_abn)
checkmate::assert_flag(drop_arm_levels)
checkmate::assert_string(tbl_title)
y <- list()
data_list <- list()
data_list <- add_expr(
data_list,
substitute(
expr = anl <- df %>%
dplyr::filter(treatment_flag_var == treatment_flag & !is.na(grade) & grade != na_level),
env = list(
df = as.name(dataname),
grade = as.name(grade),
treatment_flag_var = as.name(treatment_flag_var),
treatment_flag = treatment_flag,
na_level = na_level
)
)
)
data_list <- add_expr(
data_list,
prepare_arm_levels(
dataname = "anl",
parentname = parentname,
arm_var = arm_var,
drop_arm_levels = drop_arm_levels
)
)
data_list <- add_expr(
data_list,
substitute(
dataname <- df_explicit_na(dataname, na_level = na_level),
env = list(dataname = as.name("anl"), na_level = na_level)
)
)
data_list <- add_expr(
data_list,
substitute(
parentname <- df_explicit_na(parentname, na_level = na_level),
env = list(parentname = as.name(parentname), na_level = na_level)
)
)
y$data <- bracket_expr(data_list)
# layout start
prep_list <- list()
prep_list <- add_expr(
prep_list,
substitute(
# Define the map for layout using helper function h_map_for_count_abnormal
map <- h_map_for_count_abnormal(
df = dataname,
variables = list(anl = grade, split_rows = by_vars),
abnormal = abnormal,
method = "default",
na_str = na_level
),
env = list(dataname = as.name("anl"), by_vars = by_vars, grade = grade, abnormal = abnormal, na_level = na_level)
)
)
y$layout_prep <- bracket_expr(prep_list)
parsed_basic_table_args <- teal.widgets::parse_basic_table_args(
teal.widgets::resolve_basic_table_args(
user_table = basic_table_args,
module_table = teal.widgets::basic_table_args(
show_colcounts = TRUE,
title = tbl_title,
main_footer = "Variables without observed abnormalities are excluded."
)
)
)
layout_list <- list()
layout_list <- add_expr(
layout_list,
if (add_total) {
substitute(
expr = expr_basic_table_args %>%
rtables::split_cols_by(
var = arm_var,
split_fun = add_overall_level(total_label, first = FALSE)
),
env = list(
arm_var = arm_var,
total_label = total_label,
expr_basic_table_args = parsed_basic_table_args
)
)
} else {
substitute(
expr = expr_basic_table_args %>%
rtables::split_cols_by(var = arm_var),
env = list(arm_var = arm_var, expr_basic_table_args = parsed_basic_table_args)
)
}
)
for (by_var in by_vars) {
split_label <- substitute(
expr = teal.data::col_labels(dataname, fill = FALSE)[[by_var]],
env = list(
dataname = as.name(dataname),
by_var = by_var
)
)
layout_list <- add_expr(
layout_list,
substitute(
rtables::split_rows_by(
by_var,
split_label = split_label,
label_pos = "topleft",
split_fun = trim_levels_to_map(map = map)
),
env = list(
by_var = by_var,
split_label = split_label,
map = as.name("map")
)
)
)
}
layout_list <- add_expr(
layout_list,
substitute(
expr = count_abnormal(
var = grade,
abnormal = abnormal,
variables = list(id = id_var, baseline = baseline_var),
.indent_mods = 4L,
exclude_base_abn = exclude_base_abn
) %>%
append_varlabels(dataname, grade, indent = indent_space),
env = list(
grade = grade,
abnormal = abnormal,
id_var = id_var,
baseline_var = baseline_var,
exclude_base_abn = exclude_base_abn,
dataname = as.name(dataname),
by_vars = by_vars,
indent_space = length(by_vars)
)
)
)
y$layout <- substitute(
expr = lyt <- layout_pipe,
env = list(layout_pipe = pipe_expr(layout_list))
)
y$table <- substitute(
expr = {
table <- rtables::build_table(lyt = lyt, df = anl, alt_counts_df = parent) %>%
rtables::prune_table()
},
env = list(parent = as.name(parentname))
)
y
}
#' teal Module: Abnormality Summary Table
#'
#' This module produces a table to summarize abnormality.
#'
#' @inheritParams module_arguments
#' @inheritParams teal::module
#' @inheritParams template_abnormality
#' @param grade ([teal.transform::choices_selected()])\cr
#' object with all available choices and preselected option for variable names that can be used to
#' specify the abnormality grade. Variable must be factor.
#' @param abnormal (`named list`)\cr defined by user to indicate what abnormalities are to be displayed.
#' @param baseline_var ([teal.transform::choices_selected()])\cr
#' variable for baseline abnormality grade.
#' @param na_level (`character`)\cr the NA level in the input dataset, default to `"<Missing>"`.
#'
#' @inherit module_arguments return seealso
#'
#' @section Decorating Module:
#'
#' This module generates the following objects, which can be modified in place using decorators:
#' - `table` (`TableTree` - output of `rtables::build_table()`)
#'
#' A Decorator is applied to the specific output using a named list of `teal_transform_module` objects.
#' The name of this list corresponds to the name of the output to which the decorator is applied.
#' See code snippet below:
#'
#' ```
#' tm_t_abnormality(
#' ..., # arguments for module
#' decorators = list(
#' table = teal_transform_module(...) # applied only to `table` output
#' )
#' )
#' ```
#'
#' For additional details and examples of decorators, refer to the vignette
#' `vignette("decorate-module-output", package = "teal.modules.clinical")`.
#'
#' To learn more please refer to the vignette
#' `vignette("transform-module-output", package = "teal")` or the [`teal::teal_transform_module()`] documentation.
#'
#' @note Patients with the same abnormality at baseline as on the treatment visit can be
#' excluded in accordance with GDSR specifications by using `exclude_base_abn`.
#'
#' @examplesShinylive
#' library(teal.modules.clinical)
#' interactive <- function() TRUE
#' {{ next_example }}
#'
#' @examples
#' library(dplyr)
#'
#' data <- teal_data()
#' data <- within(data, {
#' ADSL <- tmc_ex_adsl
#' ADLB <- tmc_ex_adlb %>%
#' mutate(
#' ONTRTFL = case_when(
#' AVISIT %in% c("SCREENING", "BASELINE") ~ "",
#' TRUE ~ "Y"
#' ) %>% with_label("On Treatment Record Flag")
#' )
#' })
#' join_keys(data) <- default_cdisc_join_keys[names(data)]
#'
#' ADSL <- data[["ADSL"]]
#' ADLB <- data[["ADLB"]]
#'
#' app <- init(
#' data = data,
#' modules = modules(
#' tm_t_abnormality(
#' label = "Abnormality Table",
#' dataname = "ADLB",
#' arm_var = choices_selected(
#' choices = variable_choices(ADSL, subset = c("ARM", "ARMCD")),
#' selected = "ARM"
#' ),
#' add_total = FALSE,
#' by_vars = choices_selected(
#' choices = variable_choices(ADLB, subset = c("LBCAT", "PARAM", "AVISIT")),
#' selected = c("LBCAT", "PARAM"),
#' keep_order = TRUE
#' ),
#' baseline_var = choices_selected(
#' variable_choices(ADLB, subset = "BNRIND"),
#' selected = "BNRIND", fixed = TRUE
#' ),
#' grade = choices_selected(
#' choices = variable_choices(ADLB, subset = "ANRIND"),
#' selected = "ANRIND",
#' fixed = TRUE
#' ),
#' abnormal = list(low = "LOW", high = "HIGH"),
#' exclude_base_abn = FALSE
#' )
#' )
#' )
#' if (interactive()) {
#' shinyApp(app$ui, app$server)
#' }
#'
#' @export
tm_t_abnormality <- function(label,
dataname,
parentname = ifelse(
inherits(arm_var, "data_extract_spec"),
teal.transform::datanames_input(arm_var),
"ADSL"
),
arm_var,
by_vars,
grade,
abnormal = list(low = c("LOW", "LOW LOW"), high = c("HIGH", "HIGH HIGH")),
id_var = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, subset = "USUBJID"),
selected = "USUBJID", fixed = TRUE
),
baseline_var = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, subset = "BNRIND"),
selected = "BNRIND", fixed = TRUE
),
treatment_flag_var = teal.transform::choices_selected(
teal.transform::variable_choices(dataname, subset = "ONTRTFL"),
selected = "ONTRTFL", fixed = TRUE
),
treatment_flag = teal.transform::choices_selected("Y"),
add_total = TRUE,
total_label = default_total_label(),
exclude_base_abn = FALSE,
drop_arm_levels = TRUE,
pre_output = NULL,
post_output = NULL,
na_level = default_na_str(),
basic_table_args = teal.widgets::basic_table_args(),
transformators = list(),
decorators = list()) {
message("Initializing tm_t_abnormality")
checkmate::assert_string(label)
checkmate::assert_string(dataname)
checkmate::assert_string(parentname)
checkmate::assert_string(na_level)
checkmate::assert_list(abnormal, types = "character", len = 2)
checkmate::assert_class(arm_var, "choices_selected")
checkmate::assert_class(by_vars, "choices_selected")
checkmate::assert_class(grade, "choices_selected")
checkmate::assert_class(id_var, "choices_selected")
checkmate::assert_class(baseline_var, "choices_selected")
checkmate::assert_class(treatment_flag_var, "choices_selected")
checkmate::assert_class(treatment_flag, "choices_selected")
checkmate::assert_flag(add_total)
checkmate::assert_string(total_label)
checkmate::assert_flag(drop_arm_levels)
checkmate::assert_flag(exclude_base_abn)
checkmate::assert_class(pre_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(post_output, classes = "shiny.tag", null.ok = TRUE)
checkmate::assert_class(basic_table_args, "basic_table_args")
assert_decorators(decorators, "table")
data_extract_list <- list(
arm_var = cs_to_des_select(arm_var, dataname = parentname),
id_var = cs_to_des_select(id_var, dataname = dataname),
by_vars = cs_to_des_select(by_vars, dataname = dataname, multiple = TRUE, ordered = TRUE),
grade = cs_to_des_select(grade, dataname = dataname),
baseline_var = cs_to_des_select(baseline_var, dataname = dataname),
treatment_flag_var = cs_to_des_select(treatment_flag_var, dataname = dataname)
)
args <- as.list(environment())
module(
label = label,
ui = ui_t_abnormality,
server = srv_t_abnormality,
ui_args = c(data_extract_list, args),
server_args = c(
data_extract_list,
list(
dataname = dataname,
parentname = parentname,
abnormal = abnormal,
treatment_flag = treatment_flag,
label = label,
total_label = total_label,
na_level = na_level,
basic_table_args = basic_table_args,
decorators = decorators
)
),
transformators = transformators,
datanames = teal.transform::get_extract_datanames(data_extract_list)
)
}
#' @keywords internal
ui_t_abnormality <- function(id, ...) {
ns <- NS(id)
a <- list(...) # module args
is_single_dataset_value <- teal.transform::is_single_dataset(
a$arm_var,
a$id_var,
a$by_vars,
a$grade,
a$baseline_var,
a$treatment_flag_var,
a$treatment_flag
)
teal.widgets::standard_layout(
output = teal.widgets::white_small_well(teal.widgets::table_with_settings_ui(ns("table"))),
encoding = tags$div(
### Reporter
teal.reporter::simple_reporter_ui(ns("simple_reporter")),
###
tags$label("Encodings", class = "text-primary"),
teal.transform::datanames_input(
a[c("arm_var", "id_var", "by_vars", "grade", "baseline_var", "treatment_flag_var")]
),
teal.transform::data_extract_ui(
id = ns("arm_var"),
label = "Select Treatment Variable",
data_extract_spec = a$arm_var,
is_single_dataset = is_single_dataset_value
),
checkboxInput(ns("add_total"), "Add All Patients column", value = a$add_total),
teal.transform::data_extract_ui(
id = ns("by_vars"),
label = "Row By Variable",
data_extract_spec = a$by_vars,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("grade"),
label = "Grade Variable",
data_extract_spec = a$grade,
is_single_dataset = is_single_dataset_value
),
checkboxInput(
ns("exclude_base_abn"),
"Exclude subjects whose baseline grade is the same as abnormal grade",
value = a$exclude_base_abn
),
ui_decorate_teal_data(ns("decorator"), decorators = select_decorators(a$decorators, "table")),
teal.widgets::panel_group(
teal.widgets::panel_item(
"Additional table settings",
checkboxInput(
ns("drop_arm_levels"),
label = "Drop columns not in filtered analysis dataset",
value = a$drop_arm_levels
)
)
),
teal.widgets::panel_group(
teal.widgets::panel_item(
"Additional Variables Info",
teal.transform::data_extract_ui(
id = ns("id_var"),
label = "Subject Identifier",
data_extract_spec = a$id_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("baseline_var"),
label = "Baseline Grade Variable",
data_extract_spec = a$baseline_var,
is_single_dataset = is_single_dataset_value
),
teal.transform::data_extract_ui(
id = ns("treatment_flag_var"),
label = "On Treatment Flag Variable",
data_extract_spec = a$treatment_flag_var,
is_single_dataset = is_single_dataset_value
),
teal.widgets::optionalSelectInput(
ns("treatment_flag"),
label = "Value Indicating On Treatment",
multiple = FALSE,
fixed_on_single = TRUE
)
)
)
),
forms = tagList(
teal.widgets::verbatim_popup_ui(ns("rcode"), button_label = "Show R code")
),
pre_output = a$pre_output,
post_output = a$post_output
)
}
#' @keywords internal
srv_t_abnormality <- function(id,
data,
reporter,
filter_panel_api,
dataname,
parentname,
abnormal,
arm_var,
id_var,
by_vars,
grade,
baseline_var,
treatment_flag_var,
treatment_flag,
add_total,
total_label,
drop_arm_levels,
label,
na_level,
basic_table_args,
decorators) {
with_reporter <- !missing(reporter) && inherits(reporter, "Reporter")
with_filter <- !missing(filter_panel_api) && inherits(filter_panel_api, "FilterPanelAPI")
checkmate::assert_class(data, "reactive")
checkmate::assert_class(isolate(data()), "teal_data")
moduleServer(id, function(input, output, session) {
teal.logger::log_shiny_input_changes(input, namespace = "teal.modules.clinical")
selector_list <- teal.transform::data_extract_multiple_srv(
data_extract = list(
arm_var = arm_var,
id_var = id_var,
by_vars = by_vars,
grade = grade,
baseline_var = baseline_var,
treatment_flag_var = treatment_flag_var
),
datasets = data,
select_validation_rule = list(
arm_var = shinyvalidate::sv_required(
"Please select a treatment variable."
),
by_vars = shinyvalidate::sv_required(
"Please select a Row By Variable."
),
id_var = shinyvalidate::sv_required(
"Please select a subject identifier."
),
grade = shinyvalidate::sv_required(
"Please select a grade variable."
),
baseline_var = shinyvalidate::sv_required(
"Please select a baseline grade variable."
),
treatment_flag_var = shinyvalidate::sv_required(
"Please select indicator value for on treatment records."
)
)
)
isolate({
resolved <- teal.transform::resolve_delayed(treatment_flag, as.list(data()))
teal.widgets::updateOptionalSelectInput(
session = session,
inputId = "treatment_flag",
choices = resolved$choices,
selected = resolved$selected
)
})
iv_r <- reactive({
iv <- shinyvalidate::InputValidator$new()
iv$add_rule("treatment_flag", shinyvalidate::sv_required(
"Please select indicator value for on treatment records."
))
teal.transform::compose_and_enable_validators(iv, selector_list)
})
anl_inputs <- teal.transform::merge_expression_srv(
datasets = data,
selector_list = selector_list,
merge_function = "dplyr::inner_join"
)
adsl_inputs <- teal.transform::merge_expression_module(
datasets = data,
data_extract = list(arm_var = arm_var),
anl_name = "ANL_ADSL"
)
anl_q <- reactive({
data() %>%
teal.code::eval_code(as.expression(anl_inputs()$expr)) %>%
teal.code::eval_code(as.expression(adsl_inputs()$expr))
})
merged <- list(
anl_input_r = anl_inputs,
adsl_input_r = adsl_inputs,
anl_q = anl_q
)
validate_checks <- reactive({
adsl_filtered <- merged$anl_q()[[parentname]]
anl_filtered <- merged$anl_q()[[dataname]]
teal::validate_inputs(iv_r())
input_arm_var <- names(merged$anl_input_r()$columns_source$arm_var)
input_id_var <- names(merged$anl_input_r()$columns_source$id_var)
input_by_vars <- names(merged$anl_input_r()$columns_source$by_vars)
input_grade <- names(merged$anl_input_r()$columns_source$grade)
input_baseline_var <- names(merged$anl_input_r()$columns_source$baseline_var)
input_treatment_flag_var <- names(merged$anl_input_r()$columns_source$treatment_flag_var)
# validate inputs
validate_standard_inputs(
adsl = adsl_filtered,
adslvars = c("USUBJID", "STUDYID", input_arm_var),
anl = anl_filtered,
anlvars = c("USUBJID", "STUDYID", input_id_var, input_by_vars, input_grade),
arm_var = input_arm_var
)
})
all_q <- reactive({
validate_checks()
by_vars_names <- merged$anl_input_r()$columns_source$by_vars
by_vars_labels <- as.character(sapply(by_vars_names, function(name) {
attr(merged$anl_q()[["ANL"]][[name]], "label")
}))
tbl_title <- ifelse(
length(by_vars_labels) == 1,
paste("Laboratory Abnormality summary by", by_vars_labels),
paste(paste("Laboratory Abnormality summary by", paste(by_vars_labels, collapse = ", ")))
)
my_calls <- template_abnormality(
parentname = "ANL_ADSL",
dataname = "ANL",
arm_var = as.vector(merged$anl_input_r()$columns_source$arm_var),
by_vars = merged$anl_input_r()$columns_source$by_vars,
id_var = as.vector(merged$anl_input_r()$columns_source$id_var),
abnormal = abnormal,
grade = as.vector(merged$anl_input_r()$columns_source$grade),
baseline_var = as.vector(merged$anl_input_r()$columns_source$baseline_var),
treatment_flag_var = as.vector(merged$anl_input_r()$columns_source$treatment_flag_var),
treatment_flag = input$treatment_flag,
add_total = input$add_total,
total_label = total_label,
exclude_base_abn = input$exclude_base_abn,
drop_arm_levels = input$drop_arm_levels,
na_level = na_level,
basic_table_args = basic_table_args,
tbl_title = tbl_title
)
teal.code::eval_code(merged$anl_q(), as.expression(unlist(my_calls)))
})
decorated_table_q <- srv_decorate_teal_data(
id = "decorator",
data = all_q,
decorators = select_decorators(decorators, "table"),
expr = table
)
# Outputs to render.
table_r <- reactive(decorated_table_q()[["table"]])
teal.widgets::table_with_settings_srv(
id = "table",
table_r = table_r
)
# Render R code.
source_code_r <- reactive(teal.code::get_code(req(decorated_table_q())))
teal.widgets::verbatim_popup_srv(
id = "rcode",
verbatim_content = source_code_r,
title = label
)
### REPORTER
if (with_reporter) {
card_fun <- function(comment, label) {
card <- teal::report_card_template(
title = "Abnormality Summary Table",
label = label,
with_filter = with_filter,
filter_panel_api = filter_panel_api
)
card$append_text("Table", "header3")
card$append_table(table_r())
if (!comment == "") {
card$append_text("Comment", "header3")
card$append_text(comment)
}
card$append_src(source_code_r())
card
}
teal.reporter::simple_reporter_srv("simple_reporter", reporter = reporter, card_fun = card_fun)
}
###
})
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.