teal
application to use association plot with various datasets typesThis vignette will guide you through the four parts to create a teal
application using various types of datasets using the association plot module tm_g_association()
:
app
variablelibrary(teal.modules.general) # used to create the app library(dplyr) # used to modify data sets
Inside this app 4 datasets will be used
ADSL
A wide data set with subject dataADRS
A long data set with response data for subjects at different time points of the studyADTTE
A long data set with time to event dataADLB
A long data set with lab measurements for each subjectdata <- teal_data() data <- within(data, { ADSL <- teal.data::rADSL %>% mutate(TRTDUR = round(as.numeric(TRTEDTM - TRTSDTM), 1)) ADRS <- teal.data::rADRS ADTTE <- teal.data::rADTTE ADLB <- teal.data::rADLB %>% mutate(CHGC = as.factor(case_when( CHG < 1 ~ "N", CHG > 1 ~ "P", TRUE ~ "-" ))) }) join_keys(data) <- default_cdisc_join_keys[names(data)]
app
variableThis is the most important section. We will use the teal::init()
function to create an app. The data will be handed over using teal.data::teal_data()
. The app itself will be constructed by multiple calls of tm_g_association()
using different combinations of data sets.
# configuration for a single wide dataset mod1 <- tm_g_association( label = "Single wide dataset", ref = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variable:", choices = variable_choices(data[["ADSL"]]), selected = "AGE", fixed = FALSE ) ), vars = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variables:", choices = variable_choices(data[["ADSL"]]), selected = "BMRKR1", multiple = TRUE, fixed = FALSE ) ) ) # configuration for two wide datasets mod2 <- tm_g_association( label = "Two wide datasets", ref = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variable:", choices = variable_choices(data[["ADSL"]], c("AGE", "SEX", "STRATA1", "RACE")), selected = "STRATA1", multiple = FALSE, fixed = FALSE ) ), vars = data_extract_spec( dataname = "ADSL", select = select_spec( label = "Select variables:", choices = variable_choices(data[["ADSL"]], c("AGE", "SEX", "RACE", "COUNTRY")), selected = c("AGE", "COUNTRY", "RACE"), multiple = TRUE, fixed = FALSE ) ) ) # configuration for multiple long datasets mod3 <- tm_g_association( label = "Multiple different long datasets", ref = data_extract_spec( dataname = "ADTTE", select = select_spec( label = "Select variables:", choices = variable_choices(data[["ADTTE"]]), selected = "AVAL", multiple = FALSE, fixed = FALSE ), filter = filter_spec( label = "Select endpoint:", vars = "PARAMCD", choices = value_choices(data[["ADTTE"]], "PARAMCD", "PARAM"), selected = c("PFS", "EFS"), multiple = TRUE ) ), vars = data_extract_spec( dataname = "ADRS", reshape = TRUE, select = select_spec( label = "Select variable:", choices = variable_choices(data[["ADRS"]], c("AVALC", "BMRKR1", "BMRKR2", "ARM")), selected = "AVALC", multiple = TRUE, fixed = FALSE ), filter = list( filter_spec( label = "Select endpoints:", vars = "PARAMCD", choices = value_choices(data[["ADRS"]], "PARAMCD", "PARAM"), selected = "BESRSPI", multiple = TRUE ), filter_spec( label = "Select endpoints:", vars = "AVISIT", choices = levels(data[["ADRS"]]$AVISIT), selected = "SCREENING", multiple = TRUE ) ) ) ) # configuration for wide and long datasets mod4 <- tm_g_association( label = "Wide and long datasets", ref = data_extract_spec( dataname = "ADRS", select = select_spec( choices = variable_choices(data[["ADRS"]], c("AVAL", "AVALC")), selected = "AVALC", multiple = FALSE, fixed = FALSE, label = "Selected variable:" ), filter = list( filter_spec( vars = "PARAMCD", choices = value_choices(data[["ADRS"]], "PARAMCD", "PARAM"), selected = levels(data[["ADRS"]]$PARAMCD), multiple = TRUE, label = "Select response" ), filter_spec( vars = "AVISIT", choices = levels(data[["ADRS"]]$AVISIT), selected = levels(data[["ADRS"]]$AVISIT), multiple = TRUE, label = "Select visit:" ) ) ), vars = data_extract_spec( dataname = "ADSL", select = select_spec( choices = variable_choices(data[["ADSL"]], c("SEX", "AGE", "RACE", "COUNTRY", "BMRKR1", "STRATA1", "ARM")), selected = "AGE", multiple = TRUE, fixed = FALSE, label = "Select variable:" ) ) ) # configuration for the same long dataset (same subsets) mod5 <- tm_g_association( label = "Same long datasets (same subsets)", ref = data_extract_spec( dataname = "ADRS", select = select_spec( choices = variable_choices(data[["ADRS"]]), selected = "AVALC", multiple = FALSE, fixed = FALSE, label = "Select variable:" ) ), vars = data_extract_spec( dataname = "ADRS", select = select_spec( choices = variable_choices(data[["ADRS"]]), selected = "PARAMCD", multiple = TRUE, fixed = FALSE, label = "Select variable:" ) ) ) # configuration for the same long dataset (different subsets) mod6 <- tm_g_association( label = "Same long datasets (different subsets)", ref = data_extract_spec( dataname = "ADLB", filter = list( filter_spec( vars = "PARAMCD", choices = value_choices(data[["ADLB"]], "PARAMCD", "PARAM"), selected = levels(data[["ADLB"]]$PARAMCD)[1], multiple = FALSE, label = "Select lab:" ), filter_spec( vars = "AVISIT", choices = levels(data[["ADLB"]]$AVISIT), selected = levels(data[["ADLB"]]$AVISIT)[1], multiple = FALSE, label = "Select visit:" ) ), select = select_spec( choices = variable_choices(data[["ADLB"]], c("AVAL", "CHG2", "PCHG2")), selected = "AVAL", multiple = FALSE ) ), vars = data_extract_spec( dataname = "ADLB", filter = list( filter_spec( vars = "PARAMCD", choices = value_choices(data[["ADLB"]], "PARAMCD", "PARAM"), selected = levels(data[["ADLB"]]$PARAMCD)[1], multiple = FALSE, label = "Select labs:" ), filter_spec( vars = "AVISIT", choices = levels(data[["ADLB"]]$AVISIT), selected = levels(data[["ADLB"]]$AVISIT)[1], multiple = FALSE, label = "Select visit:" ) ), select = select_spec( choices = variable_choices(data[["ADLB"]]), selected = "STRATA1", multiple = TRUE ) ) ) # initialize the app app <- init( data = data, modules = modules( # tm_g_association ---- modules( label = "Association plot", mod1, mod2, mod3, mod4, mod5, mod6 ) ) )
A simple shiny::shinyApp()
call will let you run the app. Note that app is only displayed when running this code inside an R
session.
shinyApp(app$ui, app$server, options = list(height = 1024, width = 1024))
code <- paste0(c( knitr::knit_code$get("library"), knitr::knit_code$get("data"), knitr::knit_code$get("app"), knitr::knit_code$get("shinyapp") ), collapse = "\n") url <- roxy.shinylive::create_shinylive_url(code) cat(sprintf("[Open in Shinylive](%s)\n\n", url))
knitr::include_url(url, height = "800px")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.